
Cookie Synchronization: Everything You Always Wanted to
Know But Were Afraid to Ask

Panagiotis Papadopoulos
Brave Software

panpap@brave.com

Nicolas Kourtellis
Telefonica Research, Spain

nicolas.kourtellis@telefonica.com

Evangelos P. Markatos
FORTH-ICS, Greece

markatos@ics.forth.gr

ABSTRACT
User data is the primary input of digital advertising, fueling the
free Internet as we know it. As a result, web companies invest a lot
in elaborate tracking mechanisms to acquire user data that can sell
to data markets and advertisers. However, with same-origin policy
and cookies as a primary identification mechanism on the web, each
tracker knows the same user with a different ID. To mitigate this,
Cookie Synchronization (CSync) came to the rescue, facilitating an
information sharing channel between 3rd-parties that may or not
have direct access to the website the user visits. In the background,
with CSync, they merge user data they own, but also reconstruct a
user’s browsing history, bypassing the same origin policy.

In this paper, we perform a first to our knowledge in-depth study
of CSync in the wild, using a year-long weblog from 850 real mobile
users. Through our study, we aim to understand the characteristics
of the CSync protocol and the impact it has on web users’ privacy.
For this, we design and implement CONRAD, a holistic mechanism
to detect CSync events at real time, and the privacy loss on the user
side, even when the synced IDs are obfuscated. Using CONRAD, we
find that 97% of the regular web users are exposed to CSync: most
of them within the first week of their browsing, and the median
userID gets leaked, on average, to 3.5 different domains. Finally, we
see that CSync increases the number of domains that track the user
by a factor of 6.75.

CCS CONCEPTS
• Security and privacy→Web protocol security; • Networks
→ Network privacy and anonymity; • Social and professional
topics→ Surveillance;

KEYWORDS
Cookie Synchronization, Cross-domain tracking, HTTP Cookies

ACM Reference Format:
Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos P. Markatos.
2019. Cookie Synchronization: Everything You AlwaysWanted to Know But
Were Afraid to Ask. In Proceedings of the 2019 World Wide Web Conference
(WWW ’19), May 13–17, 2019, San Francisco, CA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3308558.3313542

This paper is published under the Creative Commons Attribution 4.0 International
(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313542

1 INTRODUCTION
In the online era, where behavioural advertising fuels the major-
ity of Internet, user privacy has become a commodity that is be-
ing bought and sold in a complex, and often ad-hoc, data ecosys-
tem [17, 24, 35, 38]. Users’ personal data collected by IT companies
constitute a valuable asset, whose quality and quantity significantly
affect each company’s overall market value [40]. As a consequence,
it is of no doubt that in order to gain advantage over their competi-
tors, web companies such as advertisers and trackers participate
in a user data collecting spree, aiming to retrieve as much infor-
mation as possible and form user profiles. These detailed profiles
contain personal data [12] such as interests, preferences, personal
identifying information, geolocations, etc. [5, 31, 44], and could be
sold to 3rd-parties for advertising or other purposes beyond the
control of the user [30, 36, 37].

Highlighting the importance of this data collection, web compa-
nies have invested a lot in elaborate user tracking mechanisms. The
most traditional one includes the use of cookies: they have been
commonly used in the Web to save and maintain some kind of state
on the web client’s side. This state has been used as an identifier to
authenticate users across different sessions and domains. Initially,
1st-party cookies were used to track users when they repeatedly
visited the same site, and later, 3rd-party cookies were invented
to track users when they move from one website to another. The
same-origin policy (SOP) was invented a few years later [45] to
restrict the potential amount of information trackers can collect
about a user and share with other 3rd-party platforms.

To overcome this restriction, and create unified identifiers for
each user, the ad-industry invented the Cookie Synchronization
(CSync) process [19]: a mechanism that can practically “circumvent”
the same-origin policy, and allow web companies to share (syn-
chronize) cookies, and match the different IDs they assign for the
same user while they browse the web. Sadly, recent results show
that most of the 3rd-parties are involved in CSync: 157 of top 200
websites (i.e. 78%) have 3rd-parties which synchronize cookies with
at least one other party, and they can reconstruct 62-73% of a user’s
browsing history [11]. Furthermore, 95% of pages visited contain
3rd-party requests to potential trackers and 78% attempt to transfer
unsafe data [46]. Finally, a mechanism for respawing cookies has
been identified, with consequences in the reconstruction of users’
browsing history, even if they delete their cookies [1].

Although past works highlight the use of CSync across the most
popular sites worldwide, they avoid diving into the details and
fail to thoroughly explore this increasingly popular technique. In
fact, the majority of related works perform their analysis using
crawled data by fetching the top Alexa websites. Consequently,
little is known on how CSync works in the wild, how many of real
users’ cookies are getting synced during their everyday browsing,

https://doi.org/10.1145/3308558.3313542
https://doi.org/10.1145/3308558.3313542

and to what extend it affects the end users’ privacy. Importantly,
existing studies focus solely on desktop web; however, today more
than 52.2% of all web traffic is generated through mobile phones (up
from 50.3% in the previous year [42]). This traffic points to a whole
new, unexplored ecosystem of mobile Web, where users browse
through their very personal devices, while employing a variety of
sensors to experience a highly personalized content, but always at
the expense of privacy. Thus, what is the impact of CSync in this
new mobile ecosystem?Which are the basic characteristics of CSync,
and the mechanics used? How does CSync impact the user’s privacy
and anonymity on the mobile web?

In this paper, we aim to answer these questions, by studying
Cookie Synchronization using a large, year-long dataset of 850 real
mobile users, and exploring in depth its use and growth through
time, dominant companies, along with its side-effects on user pri-
vacy. The contributions of this work are as follows:
• We design and implement CONRAD: (COokie syNchRonizA-

tion Detector) a holistic mechanism to detect at real time CSync
events and the privacy loss on the user side, even when synced
IDs are concealed or obfuscated by participating companies aim-
ing to reduce identifiability from traditional, heuristic-based
detection algorithms. In such cases, when non-ID related fea-
tures are used, our approach achieves high accuracy (84%-90%)
and AUC (0.89-0.97).

• We perform the first of its kind, large-scale, longitudinal study
of Cookie Synchronization on mobile users in the wild. We per-
form a passive data collection of the activity of 850 volunteering
mobile users, lasting an entire year. This means that the data
collected are not crawled, like in past studies, and therefore
do not capture a distorted or biased picture of CSync on the
Web. Instead, these data provide a rare glimpse of CSync in the
mobile space, and an opportunity to study CSync and its impact
on real mobile users’ privacy and anonymity.

• Using the proposed detection mechanism, we conduct an in-
depth privacy analysis of CSync. Our results show that 97% of
regular web users are exposed to CSync. In addition, the average
user receives ∼1 synchronization per 68 HTTP requests, and the
median userID gets leaked, on average, to 3.5 different domains.
Furthermore, CSync increases the number of domains that track
the user by a factor of 6.75. Finally, we detect CSync involved
in different scenarios such as breaking-off an SSL session, and
exposing userIDs and other personal data in cleartext.

2 COOKIE SYNCHRONIZATION
2.1 How does Cookie Synchronization work?
Figure 1 presents a simple example to understand in practice what
is CSync and how it works. Let us assume a user browsing several
domains like website1.com and website2.com, in which there
are 3rd-parties like tracker.com and advertiser.com, respec-
tively. Consequently, these two 3rd-parties have the chance to set
their own cookies on the user’s browser, in order to re-identify
the user in the future. Hence, tracker.com knows the user with
the ID user123, and advertiser.com knows the same user with the
ID userABC. Now let us assume that the user lands on a website
(say website3.com), which includes some JavaScript code from

Browser
(1)	GET
tracker.com/beacon.gif
Cookie: {cookie_ID=user123}

tracker.com

(3)	GET
advertiser.com?syncID=user123&publisher=website3
Cookie: {cookie_ID=userABC}

advertiser.com

Browser (1)	GET
tracker.com/script.js

(2)	Response
Set-cookie:	user123 tracker.com

Browser (1)	GET
advertiser.com/adBanner.png

(2)	Response
Set-cookie:	userABC advertiser.com

new	cookie	(1)

new	cookie	(2)

cookie	sync	(3)

Browser
(1)	GET
tracker.com/beacon.gif
Cookie: {cookie_ID=user123}

tracker.com

(3)	GET
advertiser.com?syncID=user123&publisher=website3
Cookie: {cookie_ID=userABC}

advertiser.com

Browser (1)	GET
tracker.com/script.js

(2)	Response
Set-cookie:	user123 tracker.com

Browser (1)	GET
advertiser.com/adBanner.png

(2)	Response
Set-cookie:	userABC advertiser.com

new	cookie	(1)

new	cookie	(2)

cookie	sync	(3)

new cookie (1)

new cookie (2)

cookie sync (3)

website1.com

website2.com

website3.com

Figure 1: Example of advertiser.com and tracker.com synchronizing
their cookieIDs. Interestingly, and without having any code in web-
site3, advertiser.com learns that: (i) cookieIDs userABC==user123
and (ii) userABC has just visited the given website. Finally, both do-
mains can conduct server-to-server user data merges.

tracker.com but not from advertiser.com. Thus, advertiser.com does
not (and cannot) know which users visit website3.com. How-
ever, as soon as the code of tracker.com is called, a GET request is
issued by the browser to tracker.com (step 1), and it responds back
with a REDIRECT request (step 2), instructing the user’s browser
to issue another GET request to its collaborator advertiser.com this
time, using a specifically crafted URL (step 3):

GET advertiser.com?syncID=user123&publisher=website3.com
Cookie: {cookie_ID=userABC}

When advertiser.com receives the above request along with the
cookie ID userABC, it finds out that userABC visited website3.com.
To make matters worse, advertiser.com also learns that the user
whom tracker.com knows as user123, and the user userABC is
basically one and the same user. Effectively, CSync enabled adver-
tiser.com to collaborate with tracker.com, in order to: (i) find out
which users visit website3.com, and (ii) synchronize (i.e., join) two
different identities (cookies) of the same user on the web.

2.2 Cookie Synchronization, Personalized
Advertising & Privacy Implications

Digital advertising has moved towards a more personalized model,
where ad-slots are purchased programmatically (e.g., Real Time Bid-
ding (RTB) based auctions) in auctions, based on how well the pro-
file of the visitor matches the advertised product. Consequently, ad-
vertisers need to obtain user data (e.g., interests, behavioral patterns)
to use as input in their sophisticated decision engines. The core
component for this data purchasing/sharing includes CSync [16].

2

Heuristics-
based detection

ML-based
cookie-less detection

Cookie Synchronization
Detection

Privacy Analysis

- Statistics
- Diffusion of leaked IDs
- Personal information

leaks

HTTP
traffic Results

Figure 2: High-level overview of CONRAD’s internal components.

It allows trackers and advertisers to perform common user identifi-
cation and by participating in data markets enrich their knowledge
base with user information from several data sources.

There are several privacy implications for the online users who
access websites planted with such sophisticated tracking technolo-
gies. Using CSync, in practice, advertiser.com learns that: (i) what it
knew as userABC is also user123, and (ii) this user has just visited
website3.com. This enables advertiser.com to track a user to a much
larger number of websites than was initially thought. Indeed, by
collaborating with several trackers, advertiser.com is able to track
users across a wide spectrum of websites, even if those websites do
not have any collaboration with advertiser.com.

To make matters worse, the ill effects of CSync may reach way
back in the past - even up to the time before the invention of
CSync. Assume, for example, that someone manages to get access
to all data collected by tracker.com, and all the data collected by
advertiser.com (e.g., by acquisition [30, 36], merging or hacking of
companies [22]). In the absence of CSync, in those two datasets,
our user has two different names: user123 and userABC. However,
after one single CSync, those two different names can be joined
into a single user profile, effectively merging all data in the two
datasets. Nowadays, such cases of server-to-server user data merges
are taking place at a massive scale [11], with the different web
companies conducting mutual agreements for data exchanges or
purchases, in order to enrich the quality and quantity of their user
data warehouses [6, 30].

As if these threats to user privacy were not enough, CSync can
rob users of the right to erase their cookies. Indeed, when coupled
with other tracking technologies (i.e. evercookie [39], or user fin-
gerprinting [9]), CSync may re-identify web users even after they
delete their cookies. Specifically, when a user erases her browser
state and restarts browsing, trackers usually place and sync a new
set of userIDs, and eventually reconstruct a new browsing history.
But if one of them manages to respawn [1] its cookie (e.g. through
evercookie [39]), then through CSync, all of them can link the user’s
browsing histories from before and after her state erasure. Con-
sequently: (i) users are not able to abolish their assigned userIDs
even after carefully erasing their set cookies, and (ii) trackers are
enabled to link user’s history across state resets.

3 COOKIE SYNCHRONIZATION DETECTION
In this paper, we design CONRAD, a holistic methodology to detect
CSync events in real time, on the user side. CONRAD monitors
the HTTP(S) traffic of the user on the browser level and detects
userIDs when shared from one domain to the other. To achieve
that, it uses a (i) Heuristics-based (stateful) detection mechanism
(Section 3.1), where the IDs from cookies are tainted and alert is
raised when they are exfiltrated to a domain other than the owner

Table 1: Examples of userIDs synchronized among various domains.
URLs of Cookie Synchronization HTTP Requests

1. a.atemda.com/id/csync?s=L2zaWQvMS9lkLzMxOUwOTUw
2. bidtheater.com/UserMatch.ashx?bidderid=23&
bidderuid=L2zaWQvMS9lkLzMxOUwOTUw&expiration=1426598931
3. d.turn.com/r/id/L2zaWQvMS9lkLzMxOUwOTUw/mpid/

of the cookie. However, as also presented in past studies [2], more
and more companies include encryption (or cryptographic hashing)
in the CSync-related APIs, thus concealing the synced IDs. To deal
with these cases, CONRAD uses a (ii) ML-based (stateless) detection
mechanism (Section 3.2) capable of classifying with high accuracy
such possible concealed synchronizations, without relying on any
previously stored cookie IDs, but only using characteristics from the
connections themselves. Figure 2, provides a high level overview
of CONRAD’s internal components.

For each CSync detection method, CONRAD extracts its infor-
mation flow: the chain of domains that share the synced ID, the
domain that triggered the CSync event, the domains that (without
having access to the website) used this sync request to set and
sync their own userIDs (see Section 5.1). This way, our tool is able
to measure the diffusion of anonymity loss for the given user by
analysing what number of their overall userIDs budget got synced,
and to how many 3rd-party domains. In addition, by using a simple
pattern matching technique, CONRAD extracts possible personal
information leaks tailored with the synced ID (see Section 5.5).

Although there are several existing techniques for detecting ID-
sharing events even when cookies are encrypted, accurate CSync
detection in real time is a hard task. The main advantages of our
approach, contrary to existing detection mechanisms [1, 2, 11] are
as follows: (i) It offers the ability to detect synchronizations when
the userID is embedded not only in the URL’s parameter, but also
in its path (either in case of request/response URL or Location URL
of the referrer). (ii) By filtering-out domains of the same provider,
our approach can discriminate between intentional CSync and
unequivocally legitimate cases of internal ID sharing, thus avoiding
false positives. (iii) It is capable of detecting Cookie Synchronization
at real time, even when shared IDs are encrypted.

3.1 Heuristics-based detection
Technically, as we see in Table 1, CSync is nothing more than a
request from the user’s browser to a 3rd-party domain carrying (at
least one) parameter that constitutes a unique ID set by the calling
domain. However, what CSync typically enables is a multiple, back-
to-back operation with several 3rd-party domains getting updated
with one particular ID. This multiple synchronization happens by
utilizing URLs of HTTP requests (i.e., the Location HTTP header),
in which the cookie ID (i.e., the userID) of the triggering domain is
embedded. The userID may be embedded in the: (i) parameters of
the URL, (ii) URL path, or (iii) referrer field. In some cases, detection
may be straightforward: one can simply look for specific parameter
names (e.g., syncid, user_id, uuid). However, different companies
use different APIs and parameter naming; relying only on string
matching for Cookie Synchronization detection will lead to a large
number of false negatives in case of newcomer syncing domains.
To remedy this, by extending previous work [29], we design a
stateful heuristics-based detection algorithm, which relies on the
previously set cookies to taint userIDs that may get synced with

3

ID-looking strings
in params/path/Referrer:
(length, # of digits/alphas)

Have you
seen this ID

again?
Yes

No

Yes

Store it along with
its domain

Cookie
Synchronization!

From different domain?
(DNS whois, blacklists)

Capture set HTTP cookies
filter-out session cookies,

extract/store cookie IDs

ID == cookie ID?

Yes

1

3

2a

2d

2c

HTTP requests

2b

Figure 3: Heuristics-based CSync detection mechanism.

domains different than the cookie setter1. In particular, our Cookie
Synchronization detection methodology includes the following
steps, which are also illustrated in Figure 3:
(1) We extract all cookies set on the user’s browser. To accomplish

that, we parse all HTTP requests in our dataset and extract all
Set-Cookie requests.

(a) We filter out all session cookies. These are cookies without
expiration date, that get deleted after the end of a session.

(b) We parse the cookie value strings using common delimiters
(i.e. “:”, “&”). By extracting potentially identifying strings
(cookie IDs), we create a list with the cookie IDs that could
uniquely identify the user in the future.

(2) We detect possible ID-sharing events in the HTTP requests:
(a) We identify ID-looking strings that are unique per user, car-

ried either (i) as parameters in the URL, (ii) in URL path,
or (iii) in the referrer field. As ID-looking strings, we de-
fine strings with specific length (> 10 characters) – false
positives do not matter at this point.

(b) If this ID is seen for the first time, it is stored in a hashtable
along with the URL’s domain (receiver of the ID).

(c) If this ID has already been seen, we consider it as a shared
ID and the requests carrying it as ID-sharing requests.

(d) To check if the above ID-sharing requests regard different
domains, we use several external sources (DNS whois, black-
lists etc.) to filter-out cases where the IDs are shared among
domains owned by the same provider (e.g., amazon.com and
amazonaws.com) [25]. This way, our approach can discrim-
inate between intentional ID leaking and legitimate cases
of internal ID-sharing, thus avoiding false positives.

(3) Finally, to verify if the detected shared ID is a userID able to
uniquely identify a user, we search this ID within the list of
cookie IDs extracted in the first step. If there is a match, then
we consider this request as CSync.

3.2 Cookie-less detection
It is apparent that in order for the above methodology to be a viable
CSync detection method, cookie IDs need to be shared in plaintext.

1A known limitation of this approach is its inability of capturing a small portion of
1st-party cookies set by javascript[7]

Table 2: Examples of Cookie Synchronization between 3rd-parties
with plaintext and encrypted cookie IDs.
ID syncs beyond the 1-1 of source domain (plaintext):

Domain syncs ID with Tracker1 ID1;→ ID1=ID;
Domain syncs ID with Tracker2 ID2;→ ID2=ID;
Tracker1 syncs ID1 with Tracker2 ID2;→ ID2=ID1=ID;
ID syncs beyond the 1-1 of source domain (encrypted):
Domain syncs h(ID,A) with Tracker1 ID1;→ ID1=h(ID,A);
Domain syncs h(ID,B) with Tracker2 ID2;→ ID2=h(ID,B);
Tracker1 syncs ID1 with Tracker2 ID2;→ h(ID,A)!=h(ID,B), i.e., ID1!=ID2;

However, major web companies such as DoubleClick [19] have
started encrypting the cookie ID in an attempt to protect the actual
cookie from being revealed to unwanted parties that may snoop
the user’s traffic (plugins or even ISPs).

While the former case is obvious why companies would want to
block such snooping, the latter case may not be clear why and, thus,
we discuss this case further. In particular, under the traditional,
plaintext case of cookie ID syncing, the same source company
can sync independently with multiple 3rd-parties for the same user
cookie ID. Thus, no-one forbids these other 3rd-parties from syncing
their IDs with each other, and find out that they have information
about the same user, something that goes beyond what the source
company intended to do (top example of Table 2). With hashing
or encryption of the cookie ID, these 3rd-parties are unable to do
this syncing (bottom example of Table 2). As a consequence of this
encryption, CSync events can proceed undetected, if the previously
used detection method is employed.

To address this scenario, in this paper, we propose a novel method
for identifying CSync which is oblivious to the IDs shared. This
mechanism is able to identify with high accuracy CSync events in
web traffic, even when the leaked IDs are protected and cannot be
matched. To build this mechanism, we employ machine learning
methods, which we train on the ground truth datasets created with
the previous, heuristic-based technique. In particular, we analyze
various features extracted from the web traffic due to CSync, and
train a machine learning classifier to automatically classify a new
HTTP connection as being a CSync event or not. Here, we make
the assumption that the various features used to characterize, and
eventually detect, CSync with plaintext IDs, are equally used, and
have the same distributions and variability as in the CSync with
encrypted IDs. We believe this is a reasonable assumption, since the
companies employing encrypted IDs are not expected to change
the rest of their mechanism which delivers these IDs and triggers
CSync with their partners; these companies only want to obfuscate
the IDs to avoid further, and unwanted, CSync.

For training the classifier, we extract various relevant features
from the network traces. As ground truth, we use confirmed CSync
events which were detected with the heuristics-based method de-
scribed earlier. Beyond these confirmed events, there are id-sharing
events which were first selected by the method as potential CSync
events, but eventually were rejected as non-CSync, as they did not
match cookie IDs already seen by the method (step 1 in Figure 3).

The features available for these network events can be several;
we constrain the learning algorithm to use only features available
at run time, and during the user’s browsing to various websites:
• EntityName: {domain of recipient company}
• TypeOfEntity: {Content, Social, Advertising, Analytics, Other}
• ParamName: {aid, u, guidm, subuid, tuid, etc.}

4

 0

 20

 40

 60

 80

 100

 120

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

Sep
Oct

Nov
Dec

V
is

it
e
d
 d

o
m

a
in

s
 p

e
r

u
s
e
r

Month of the year

Figure 4: Distribution of number
of unique domains visited per
user, per month. The median user
in our dataset visits 20 - 30 differ-
ent domains per month.

 0

 5

 10

 15

 20

 25

 30

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

Sep
Oct

Nov
Dec

N
u
m

b
e
r

o
f
re

v
is

it
s

Month of the year

Figure 5: Distribution of number
of times a user revisits the same
domain per month. The median
user revisits a domain around 7-10
times per month.

 0

 5

 10

 15

 20

 25

 30

 35

 40

Jan
Feb

Mar
Apr

May
Jun

Jul
Aug

Sep
Oct

Nov
Dec

U
n
iq

u
e
 c

o
o
k
ie

s
/d

o
m

a
in

p
e
r

u
s
e
r

Month of the year

Figure 6: Number of (first and
3rd-party) cookies per domain per
user. We see that the median user
receives 12.25 cookies, on average,
per visited website.

0%

20%

40%

60%

80%

100%

 1 10 100 1000C
u
m

u
la

ti
v
e
 d

is
tr

.
o
f
u
s
e
rs

Median number of different
userIDs per domain

Figure 7: Unique userIDs set per
domain, across the year. 80% of
users are known to a single do-
main with only ∼2 aliases, on av-
erage.

Table 3: Summary of contents in our dataset.
Description # Description #
Total mobile users 850 Unique shared IDs (S) 68215
Requests captured 179M Unique userIDs synced (C∩S) 22329
Unique Cookies (C) 8.97M CSync requests 263635
ID sharing requests 412805

• WhereFound: {parameter in URL, parameter in Referrer, in the
URL path}

• StatusCode: {200, 201, 202, 204, etc.}
• Browser: {Firefox, Chrome, Internet Explorer, etc.}
• NoOfParams: {0, 1, 2, ..., etc.}
Various machine learning algorithms can be applied: Random

Forest, Support Vector Machines, Naive Bayes, and even more ad-
vanced methods such as Neural Networks. However, a balance must
be found between training the given algorithm to reach a good accu-
racy, the computation cost for this training, as well as the capability
of the algorithm to be used at real time on the user device.

This method aims to address two possible scenarios that can
arise while IDs are being shared: First, we consider the realistic
scenario that an already identified set of id-sharings are candidate
CSync events (as found by the heuristics-based method), but cannot
be validated as CSyncs because of the cookie ID being encrypted
or unavailable, and therefore not matching the repository of IDs.
Second, we consider the scenario where various HTTP connections
are ingested by the method, and it needs to decide at run-time
which are CSync events and which are not. This case is a more
generalized version of the previous scenario, and attempts to detect
CSync events, as an alternative method to the heuristic-based ap-
proach. In either of the two cases, we follow a generally accepted
methodology (e.g., [34]) that separates training such a machine
learning model, from applying it at real-time. The training can be
performed offline, on an existing dataset (e.g., the one we collected,
or from anonymous user network traffic donations), and the model
trained can be distributed accordingly with the tool at hand. Then,
the tool can apply the classifier on each network connection under
question, for real-time classification.

4 DATASET
In this section, we describe the data collection process and our
year long dataset. In order to collect data from real users, we set
a group of proxies fronted by a load balancer, and gathered 850
volunteering users residing in the same country. These users agreed

to strip their browsers from any previous state (i.e., cookies, cache,
webStorage) and have their devices to continuously redirect their
network traffic through our proxies for 12 consecutive months
(2015-2016). They signed a consent form allowing us to collect and
analyze their data during this period, and publish any anonymized
results. They were well-aware of the purposes of the data collection,
and were compensated with free data plan, as long as they were
using the proxies. Before the analysis was performed, all data were
anonymized and never shared with any other domains.

Given the long duration of the experiment, and in order not
to jeopardize the confidentiality of the volunteering users’ secure
sessions, we capture only their HTTP mobile traffic (same method
can be applied for HTTPS). On the server-side and based on the
user agent of each request, we filtered out any possible app-related
traffic. Overall, we collected a dataset containing a total of 179M
requests, spanning an entire year. Table 3 summarizes the contents
and CSync findings in our dataset.
Users: To analyse our dataset, we create a simple weblog parser. As
noted earlier, this dataset consists of web browser traffic from the
mobile devices of 850 users. After separating the flows of each one
of them, we produced their timelines, and in Figure 4, we present
the number of different domains each user visits per month. As
we see from the distribution (Percentiles: 10th, 25th, 50th, 75th,
90th), the median user in our dataset visits 20-30 different domains
depending on the month (we observe a seasonal phenomenon with
increases during spring break and summer holidays).

Similarly, in Figure 5, we present the number of times each of
these domains gets revisited by the median user in our dataset. In
every revisit, there is a new request that asks the user’s browser if
there is a previously set cookie. If this Get-Cookie request regards a
previously set cookie, this means that the domain already knows
the user and we consider it as a revisit. We observe that the median
user revisits around 7-10 times the same domain from their mobile
browser. Again, we observe the seasonal phenomenon as earlier,
when users tend to have more time to browse the web. Also, the
75th percentile of the users may revisit the same website more than
15 times (March, August).
Cookies: To have a good view of the cookie activity of users, we
extract all (1st & 3rd-party) cookies set in users’ browsers across the
year, and in Figure 6, we plot the distribution of number of cookies
per visited website. The median user receives a fairly constant
number of 12.25 cookies per visited website per month, on average.

5

0%

20%

40%

60%

80%

100%

 0 50 100 150 200

C
D

F

of days

Figure 8: Distribution of time
taken for first CSync to appear per
user. 20% of users get their first
userID synced in 1 day or less.

 0

 0.005

 0.01

 0.015

 0.02

J
a

n

F
e

b

M
a

r

A
p

r

M
a

y

J
u

n

J
u

l

A
u

g

S
e

p

O
c
t

N
o

v

D
e

c

A
v
e

ra
g

e
 s

y
n

c
s
/r

e
q

 p
e

r
u

s
e

r

Time Period

Figure 9: CSyncs per request for
the average user across the year.
The average user receives 1 syn-
chronization every 68 requests.

0%

20%

40%

60%

80%

100%

10
0

10
1

10
2

10
3C

u
m

u
la

ti
v
e
 d

is
tr

.
o
f
u
s
e
rs

Total User IDs synced

Figure 10: Distribution of the
synced userIDs per user. The me-
dian user has 7 userIDs synced,
when 3% of users has up to 100.

0%

20%

40%

60%

80%

100%

10
1

10
2

10
3

C
u
m

u
la

ti
v
e
 d

is
tr

.
o
f
u
s
e
r

ID
s

of synchronizations

Figure 11: Distribution of syn-
chronizations per userID. The me-
dian userID gets synced with 3.5
different domains.

Table 4: Breakdown of the CSync triggering factors.

Initiator Portion
(i) Publisher syncs its userID 2.692%
(ii) Embedded 3rd-party triggers syncing of its

own set userID
49.668%

(iii) 3rd-party uses sync request to share its own
set userID

45.697%

(iv) 3rd-party uses sync request to share with
other domains the publisher’s set userID

0.2658%

Next, we extract the unique identifiers (i.e., cookie ID) set in
these cookies. A cookie ID constitutes a unique string of characters
that websites and servers associate with the browser and, thus, the
user who stored the cookie. Thereby, here, we consider a cookie
ID as a unique user identifier called userID. As it can be seen in
Table 3, in our dataset, there are almost 9 million such unique IDs.

In Figure 7, we plot the distribution of the number of unique
userIDs assigned to the users per domain. The vast majority of
the users (80%) receive, on average, only 2.2 userIDs per domain,
across the year. This means that users tend not to erase their cook-
ies frequently, thus, allowing web domains to accurately identify
them through time and during the users’ browsing. Only 1.13% of
users erase their cookies (either manually or by browsing with Pri-
vate/Incognito Browsing), receiving more than 9.5 different userIDs
per domain, on average. This means that it is very rare for a domain
to meet a previously known user with a different alias.

5 PRIVACY ANALYSIS
By applying CONRAD in our dataset, we find several IDs passed
from one domain to another. We detect 68215 such unique shared
IDs. From these IDs, 22329 were actually cookie IDs from previously
set cookies that were synced among different domains. In total,
these cookie IDs were found in 263635 synchronization events
(see Table 3 for a summary). From the CSyncs detected in our
dataset, userIDs were found in 91.996% of the cases inside the URL
parameters, 3.705% in the Referrer URL, and in 3.771% of the cases
in the URL path. Thus, CONRAD was able to detect 3.771% more
cases of CSyncs than existing detection methods [1, 29, 32].

5.1 Initiation of Cookie Synchronization
First, we correlate the cookie domain (the setter), the synchronizing
request’s Referrer field, and the publisher that the user visited, in
order to extract the domain that triggered the CSync on the user’s
browser. As seen in Table 4, there are 4 distinct cases: (i) the CSync

was initiated by the publisher who syncs the userID he assigned for
the user: we find 2.692% of these cases in our dataset, (ii) the syn-
chronization was initiated from a publisher’s iframe, by the guest
3rd-party which syncs its own userID (49.668%), (iii) a 3rd-party
which participated in a previous synchronization (case (i) or (ii)
above) and uses the sync request to share its own userID (45.697%).
Lastly, there is a rare case (iv), where a 3rd-party participating in a
previous synchronization of the publisher’s userID (case (i)) initi-
ates a new round of syncs while it continues to share the publisher’s
userID (0.2658%). Obviously, in case (iv), the initiating 3rd-party
shares with its 3rd-party affiliates, a userID assigned by a domain
(the publisher) beyond its control, and possibly awareness.2

5.2 How are users exposed to CSync?
CSync impacts users’ privacy by leaking assigned userIDs, and
sharing them with 3rd-parties. In our dataset, we see that for users
with regular activity on the web (> 10 requests per day), 97%
were exposed to CSync at least once. This means that CSync
constitutes a phenomenon affecting the totality of online users.
Next, we study how long it takes for the first synchronization to
happen, or in effect, how quickly a user gets exposed to CSync
after she starts browsing. Recall that as mentioned in Section 4, all
participating users, during bootstrapping phase, had all state from
their browsers erased. Thismeans that our proxywas able to capture
the very first cookie that was set during the user’s monitoring
period. Of course, the time depends on the browsing patterns of
each user, however, as we see in Figure 8, a median user experiences
at least one CSync within the first week of browsing. In fact, a
significant 20% of users get their first userIDs synced in 1 day
or less. It is worth noting that users tend to browse the same top
websites repeatedly (e.g., facebook.com, twitter.com, cnn.com), so
the set cookies are already shared and no sync is fired.

Next, we investigate if the synchronizations the users are ex-
posed to, change over time. Hence, we extract CSyncs per user, and
normalize with the user’s total number of requests. In Figure 9, we
plot the average synchronizations per request across the year. As
shown, CSync is persistent through the duration of an entire year,
with the user being exposed to a steady number of synchronizations
across time. Specifically, we see that the average user receives
around 1 synchronization per 68 requests.

2We reported all such cases and notified the respected publishers.

6

0%

20%

40%

60%

80%

100%

 1 10 100 1000

C
D

F
 o

f
s
y
n
c
e
d
 u

s
e
rs

Domains learned about the user

before CSync
after CSync

Figure 12: Distribution of do-
mains learning at least a userID
of a user (with/without the effect
of CSync). After syncing, the
domains that learned about the
median user grew by 6.75×.

0%

20%

40%

60%

80%

100%

 1 10 100

C
D

F
 o

f
a
ff
e
c
te

d
 u

s
e
rs

of leaked SSL URLs

Figure 13: Distribution of the
leaked TLS URLs per affected user.
The median user has 70 TLS URLs
leaked through Cookie Synchro-
nization,when the 90th percentile
has up to 226 TLS URLs leaked.

0%

20%

40%

60%

80%

100%

Advertising(301)

Analytics(25)

Social(4)

Content(13)

Other(1294)

P
o
rt

io
n
 o

f
s
y
n
c
e
d
 u

s
e
rI

D
s

Content category (number of companies)

Figure 14: Portion of synced
userIDs learned per content
category. As expected, ad-related
companies learned the vast ma-
jority (90%) of the total synced
userIDs in our dataset.

0%

20%

40%

60%

ru
b
ico

n
p
ro

je
ct.co

m

3
6
0
yie

ld
.co

m
o
p
e
n
x.n

e
t

ca
sa

le
m

e
d
ia

.co
m

sm
a
rta

d
se

rve
r.co

m

n
e
xa

c.co
m

a
d
n
xs.co

m
lijit.co

m
tu

rn
.co

m
co

n
te

xtw
e
b
.co

m

sp
o
txch

a
n
g
e
.co

m

a
d
a
p
.tv

a
d
sca

le
.d

e
a
d
te

ch
.d

e
a
te

m
d
a
.co

m
stickya

d
stv.co

m

live
ra

il.co
m

fa
ce

b
o
o
k.co

m
a
d
ve

rtisin
g
.co

m

e
xe

la
to

r.co
m

b
lu

e
ka

i.co
m

P
o

rt
io

n
 o

f
s
y
n

c
e

d
 u

s
e

rI
D

s

Top syncing companies

Figure 15: Portion of synced
userIDs learned per tracker: 3
trackers learn more than 30% of
the total userIDs in our dataset;
14 trackers learn more than 20%
of userIDs each.

Considering the different userIDs that trackers may assign to
a user, in Figure 10, we measure the number of unique userIDs
that got synced per user. Evidently, a median user gets up to 6.5
userIDs synced, and 3% of users has up to 100 userIDs synced.
It becomes apparent that the IDs of a user may leak to multiple
3rd-party domains through CSync. To measure the userID leak
diffusion, in Figure 11, we plot the distribution of synchronizing
requests per userID. As we see, the median userID gets leaked,
on average, to 3.5 different domains. There is also a significant
14% that gets leaked to up to 28 different 3rd-parties.

To better understand the effect of CSync on the diffusion of
the overall user privacy, we measure for each user the number
of domains that learned about them (i.e., learned at least one of
their userID) before and after CSyncs. From the distribution in
Figure 12, the domains that learned about the median user
after CSyncs grew by a factor of 6.75, and for 22% of users this
factor becomes > 10. This means that before the rise of CSync,
when the user visited a website, the domains that could track them
were only the publisher and the included 3rd-parties, but in an
independent fashion. However, with the introduction of CSync, the
number of domains that can track the user drastically increased
(6.75x for median user), severely decreasing their online anonymity.

5.3 Buy 1 - Get 4 for free: ID bundling and
Universal IDs

We find 63 cases of domains which set on the users’ browsers
cookies with userIDs previously set by other domains. For
example, we see the popular baidu.com, the world’s eighth-largest
Internet company by revenue, storing a cookie with an IDbaiduid =

Table 5: Example of an ID Summary stored on the user’s browser. It
includes userIDs and expiration dates used for the particular user
by 4 different domains.
ID Summary stored in cookie by adap.tv

“key=valueclickinc:value=708b532c-5128-4b00-a4f2-
2b1fac03de81:expiresat=wed apr 01 15:03:42 pdt
2015,key=mediamathinc:value=60e05435-9357-4b00-
8135-273a46820ef2:expiresat=thu mar 19 01:09:47 pst
2015,key=turn:value=2684830505759170345:expiresat=fri mar
06 16:43:34 pst 2015,key=rocketfuelinc:value=639511
149771413484:expiresat=sun mar 29 15:43:36 pst 2015”

{idA}, and more than 5 different domains after this incident setting
their own cookie using the same ID baiduid = {idA}. This by-
product of CSync, enables trackers to use universal IDs, thus, bluntly
violating the same-origin policy and merging directly (without
background matching) the data they own about particular users.

In addition, we find 131 cases of domains storing in cookies
the results of their CSyncs, thus composing ID Summaries.
In these summaries, we see the userIDs that other domains use
for the particular user previously obtained by CSyncs. An example
of such summaries in JSON is shown in Table 5. As one can see,
the cookie set by adap.tv includes the userIDs and cookie expira-
tion dates of valueclick.com, mediamath.com, turn.com and
rocketfuel.com. In our dataset, we find at least 3 such compa-
nies providing ID Summaries to other collaborating domains. This
user-side info allows (i) the synchronizing domains to learn more
userIDs through a single synchronization request, and (ii) adap.tv
to re-spawn any deleted or expired cookies of the participating
domains at any time, just by launching another CSync.

5.4 Spilling userIDs out of TLS
It is well-known that mixing encrypted and non encrypted sessions
in TLS is a bad tactic [10]. Using TLS, everything except IPs and
ports is encrypted [15] in a HTTP connection. As a result, although
there are sophisticated estimation techniques [18], no observer can
monitor what the user is actually browsing over TLS, or the IDs
assigned to her. Given that our proxy is monitoring only HTTP
traffic (see Section 4), one would expect that no information from
secure TLS sessions would be captured. To our surprise, and as
already found in [33], in our dataset we see userIDs that originated
from TLS sessions getting leaked over plain HTTP to plain 3rd
parties. As a result, any curious, in-path observer (e.g., a snooping ISP)
can eavesdrop the leaked userIDs3. To make matters worse, we see
that the same ID leaking requests have referrer fields4, which leak
the particular webpage the user visited over TLS (e.g., the particular
article of the news site she read), thus leaking her interests.

To reproduce this leak, we manually visit the TLS protected
websites where ID-spilling was found and we see it is caused by

3As soon as we verified this leak, we notified publishers and also our volunteering
users who updated their signed consent.
4There are specific directives [23] for Referrer field hiding when referring over TLS
visited domains.

7

Table 6: Example of ID-spill from SSL in our dataset.
Role Domain
Visited website: https://financialexpress.com
Cookie setter: https://tapad.com
SetCookie: D0821FA0-8A80-4D9E-BC85-C40EAC4E4FF5
Cookie syncer: http://delivery.swid.switchadhub.com/adserver/user_sync.php?

SWID=cf43265166a9ccf5f6fd0472f23776fa&sKey=PM2&
sVal=D0821FA0-8A80-4D9E-BC85-C40EAC4E4FF5
referrer: financialexpress.com
Get-cookie: {cf43265166a9ccf5f6fd0472f23776fa}

Cookie syncer: http://tags.bluekai.com/site/3096?id=D0821FA0-8A80-
4D9E-BC85-C40EAC4E4FF5
referrer: financialexpress.com
Get-cookie: {c57b29d1-f8e2-11e7-ac1b-0242ac110005}

CSync events that sync a userID from a TLS cookie with non-TLS
3rd parties. In Table 6, we present one such real case we observe. As
shown, while visiting over TLS the page https://financialexpress.com,
two CSyncs are performed: https://tapad.com advertiser shares with
http://switchadhub.com and http://bluekai.com the ID it assigned
to the user. This way, the latter two tracking domains sync their
set-cookies with the one of https://tapad.com. However, by doing
that over plain HTTP, the visited webpage gets leaked through
the referrer field to a monitoring entity, even when users browse
through proxies or VPN, or even Tor. In addition, this entity from
now on can re-identify the user in the web, just by monitoring the
userIDs of cookies in requests destined to http://switchadhub.com
and http://bluekai.com, even if the user’s IP address is frequently
changed. Obviously, the more 3rd-parties were participating in the
Cookie Synchronization, the easier it would be for the monitoring
entity to capture HTTP requests loaded with these synced cookies
and, thus, re-identify the user using a secure VPN.

We measured such cases in our dataset and found 44 users (5%)
affected by the ID-spilling of CSync. The majority of leaked
domains regard popular content providers, where an eavesdropper
from the referrer field, apart from the domain, can also see sensitive
information. From Figure 13, the median (90th percentile) user has
70 (226) TLS URLs leaked through CSync.

5.5 Sensitive information leaked with userIDs
The websites a user browses can easily leak through the referrer
field during a CSync. Moving beyond this type of basic leak, in
our dataset we find several cases of privacy-sensitive information
passed to the syncing domain regarding the particular user with
the particular synced ID. By deploying a simple string matching
script, we look for keywords (e.g., gender, age, name, etc.) and find:
• 13 syncs leaking the user’s city level location
• 2 syncs leaking the user’s registered phone number
• 10 syncs leaking the user’s gender
• 9 syncs leaking the exact user’s age
• 3 syncs leaking the user’s full birth date
• 2 syncs leaking the user’s first and last name
• 16 syncs leaking the user’s email address
• 4 syncs leaking user login credentials: username/password

The above information constitutes not only a severe privacy threat
for the user, but can also enables potential impersonation attacks.

5.6 Who are the dominant CSync players?
In order to assess the content that CSync parties provide, we extract
all domains involved in CSync, and using EasyList, EasyPrivacy [14]
and the blacklist of the Disconnect browser extension [8] (enriched

Table 7: Performance of decision tree model trained on different
subsets of features available at runtime for classification, given al-
ready identified id-sharing entries, and 10 cross-fold validation.
Feature subset F TPR FPR PR RC FM AUC
NoOfParams* 1 0.639 0.639 0.408 0.639 0.498 0.500
WhereFound+ 1 0.643 0.610 0.612 0.643 0.535 0.602
StatusCode*+ 1 0.648 0.619 0.723 0.648 0.523 0.633
TypeOfEntity*+ 1 0.735 0.432 0.752 0.735 0.701 0.661
Browser*+ 1 0.700 0.492 0.710 0.700 0.651 0.628
ParamName+ 1 0.815 0.295 0.828 0.815 0.803 0.834
EntityName*+ 1 0.803 0.295 0.806 0.803 0.793 0.854
{id-less}* 5 0.840 0.242 0.845 0.840 0.834 0.887
{high imp.}+ 6 0.870 0.206 0.877 0.870 0.865 0.919
ALL 9 0.900 0.144 0.901 0.900 0.898 0.946

with our additions after manual inspection), we categorize them ac-
cording to the content delivered. This way, we create five categories
of domains related with: (i) Advertising, (ii) Analytics, (iii) Social,
(iv) 3rd-party content (e.g., CDNs, widgets, etc.), and (v) Other.

As we saw in Figure 11, the median userID gets shared with
more than one domains. We find that ad-related domains par-
ticipate in more than 75% of the overall CSyncs through the
year. Consequently, as we can also observe in Figure 14, ad-related
domains have learned as much as 90% of all userIDs that got
synced, with Social and Analytics -related domains following with
24% and 20% respectively. In Figure 15, we plot the top 20 compa-
nies5 that learned the biggest portion of the total userIDs through
CSyncs in our dataset. Interestingly, the top 3 companies (i.e., ru-
biconproject.com, 360yield.com and openx.net) learned more than
30% of all userIDs in our dataset each. There is also a significant
number (14) of companies that learn more than 20% of userIDs.

6 COOKIE-LESS DETECTION
In this section, we explore two different scenarios outlined in Sec-
tion 3.2 regarding the detection of CSync via ID sharing, while such
IDs may be obfuscated to remove the possibility of matching them
with past IDs shared between entities. First, we explore the sce-
nario where IDs have been shared, detected by the heuristic-based
approach, but have not yet been confirmed as CSync events. That
is, we consider an already identified set of id-sharings, which are
candidate CSync events, but cannot be validated as CSyncs because
of the cookie ID being encrypted or unavailable (Section 6.1). Sec-
ond, we take a step back and consider the more general case where
various HTTP connections are ingested by the method, and it needs
to decide at run-time which are CSync events and which are not
based on given features (Section 6.2).

Towards this end, we train and test the classifier in these two
experiments. We remind the reader of the assumption made earlier:
the distributions of the features describing the CSync events with
unencrypted IDs, have the same variability in the cases of encrypted
IDs, and therefore can be used for the detection of such cases. This
assumption allows us to handle the problem as an out-of-sample
estimation, leaving as future work the final validation with a set
of ground-truth data of encrypted IDs that we also know their
unencrypted versions.
Data and Features: Based on the ground truth data presented ear-
lier with the heuristic-based technique, we have 412.8k id-sharing
events, from which 263.6k are confirmed CSync, and 149.2k are
5In a dataset with both HTTP and HTTPS traffic, market shares may differ since there
are companies operating over SSL only (e.g., DoubleClick)

8

Table 8: Performance of decision tree model trained on different
subsets of features available at runtime for classification, given a
pre-filter for ID-looking strings. All results besides the last row are
with balanced dataset across the three classes, and 10-cross fold val-
idation. The last row’s results are computed given an unseen, and
unbalanced test set, maintaining the original ratio of classes.
Feature subset F TPR FPR PR RC FM AUC
NoOfParams* 1 0.541 0.314 0.584 0.541 0.495 0.706
StatusCode*+ 1 0.666 0.229 0.673 0.666 0.598 0.764
TypeOfEntity*+ 1 0.760 0.162 0.724 0.760 0.695 0.834
EntityName*+ 1 0.865 0.075 0.863 0.865 0.860 0.962
ParamName+ 1 0.870 0.083 0.878 0.870 0.859 0.953
{id-less}* 4 0.904 0.057 0.904 0.904 0.898 0.973
{high imp.}+ 4 0.919 0.051 0.923 0.919 0.914 0.978
ALL 5 0.920 0.051 0.925 0.920 0.916 0.978
Unbalanced 5 0.981 0.004 0.989 0.981 0.984 0.999

identified as non-CSync. The features available for these events can
be various, as already explained in 3.2. The ones we use are features
available at run time, and during the user’s browsing to websites.
Algorithms: The final machine learning classifier used is decision
tree-based. Others like Random Forest, Support Vector Machines
and Naive Bayes were tested, but the decision tree algorithm out-
performed them, with significantly less computation and memory
overhead. Indeed, more advanced methods can be used, such as
Neural Networks, but since the decision tree-based algorithmworks
very well, we leave this exploration for the future.
Metrics: To evaluate the performance of the classifier on the dif-
ferent classes and available features (F), standard machine learning
metrics were used such as Precision (PR), Recall (RC), F-measure
(FM), True Positive rate (TPR), False Positive rate (FPR), and area
under the receiver operating curve (AUC).

6.1 CSync in ID-sharing HTTP
In this experiment, we assume there is already in place an existing
technique for analysis of the HTTP traffic of the user, similar to the
method outlined in Figure 3. However, there are candidate CSync
events that cannot be confirmed, as the IDs cannot be matched with
SET cookie IDs, either because these actions are not available to
the method, or because the IDs are encrypted.

In this case, a machine learning classifier can be trained to detect
if an id-sharing HTTP request is a true CSync event, by matching
its pattern to past verified CSync events. For this experiment, we
use two classes: the CSync events and the id-sharing but non-CSync
events, to train and test a decision tree classifier under different
subsets of features. The training and testing was performed using 10
cross-fold validation process. The results are shown in Table 7. We
observe that independently, each of the features considered have
some predictive power, except from the NoOfParams feature. When
the most important features (using information gain as metric) are
combined, a weighted AUC of 0.919 is achieved. When we select
non-ID related features, a weighted AUC=0.887 is reached, and with
all features the classifier can reach a weighted AUC=0.946.

6.2 CSync in HTTP with ID looking strings
In this setup, we assume there is a simple HTTP pre-filter, keeping
connections with ID looking strings for further investigation. This
is a necessary step to reduce the run-time workload of the classifier,
as connections relevant to the task are only ∼20% of the overall
HTTP workload. Then, the classifier has to decide which of the 3

Table 9: Detailed performance of decision tree model trained on dif-
ferent subsets of features in a balanced dataset, and tested on an
unseen, and unbalanced test set, which maintains the original ratio
of classes (last row of Table 8). C: CSync, ICS: id-sharing but non-
CSync, O: Other, WA: weighted average.

Class TPR FPR PR RC FM AUC
CS 0.988 0.014 0.534 0.988 0.693 0.998
ICS 0.603 0.005 0.458 0.603 0.521 0.990
O 0.984 0.004 1.000 0.984 0.992 0.999
WA 0.981 0.004 0.989 0.981 0.984 0.999

classes match for each of the selected HTTP requests: 1) CSync, 2)
id-sharing but non-CSync, 3) other. In this case, other refers to HTTP
entries containing an ID-looking string, but are not id-sharing.

We perform two rounds of tests on one month’s data: 1) train and
test the algorithm using balanced data from the three classes, in a
10 cross-fold validation process. 2) train the algorithm on balanced
data from the three classes (as in (1)), but test it on an unseen and
unbalanced dataset which maintains the ratio of the three classes:
CSync: 1.6%, id-sharing but non-CSync: 0.73% other: 97.67%.

As seen from the classification results (Table 8), the company
name and parameter used are among the most important features;
number of parameters is the worst. Non-ID related features allow
the classifier to reach weighted AUC = 0.973, with a high weighted
Precision and Recall across all classes. When all features are used, a
weighted AUC = 0.978 is reached, similarly to the high importance
feature set that disregards the number of parameters. Interestingly,
when the classifier is trained on the balanced dataset, and tested
on the unbalanced test set (last row of Table 8), the classifier can
distinguish very well the three classes, with low error rates across
all three classes, even though there is high imbalance in the classes.
These results are further validated by the breakdown of perfor-
mance per class, demonstrated in Table 9, which show high TP rate
and low FP rate for all three classes independently.

Overall, the results show that it is possible to understand and
model the patterns of CSync, as they are driven by particular types
of companies, using specific parameters, etc. Therefore, an online
classifier could be trained to provide insights as to what each HTTP
connection is and how likely it is to be performing CSync, without
the need to match the IDs to SET cookie actions.
7 RELATEDWORK
CSync has become a commonplace on the Web. One of the first
works to discuss this mechanism [29] studies programmatic auc-
tions from a privacy perspective and presents CSync as an integral
part of communication between the participating entities. The study
identified over 100 CSync events while crawling the top 100 sites.
In our study, we extend their detection mechanism to detect CSync
when cookieID is piggybacked in either URL parameters or path.

In [1], authors conduct a CSync privacy analysis by studying a
small dataset of 3000 crawled sites, in conjunction with re-spawning
cookies and how, together, they affect the reconstruction of user’s
browsing history by trackers. In [32] they measure the advertising
ecosystem cost to users. Focusing on user privacy and targeted
advertising, they use CSync as a metric for anonymity loss, showing
that users receive 3.4 CSyncs per ad-impression.

Papadopoulos et al. [33] present how CSync can wreck a secure
browsing session. They show cases where 3rd-parties may leak a
user’s cookie IDs and browsing history, thus increasing the identifi-
ability of the user to a snooping ISP. By probing the top 12k Alexa

9

sites they find 1 out of 13 websites exposing their users to these
privacy leaks even when they use TLS and secure VPN services. In
a recent census by Englehardt et al. [11], authors measure CSync
and its adoption in a small subset of 100,000 crawled sites, before
highlighting the need of further investigation given its increased
privacy implications. Their results show that 157 of top 200 (i.e.
78%) 3rd parties synchronize cookies with at least one other party.

In [16] they study the economics and the revenue implications
of CSync from the point of view of an informed seller of advertising
space, uncovering a trade-off between targeting and information
leakage. Similarly, in [4], authors explore the role of data providers
on the price and allocation of consumer-level information and
develop a simple model of data pricing that captures the key trade-
offs involved in selling information encoded in 3rd-party cookies.
In [13] they investigate tracking groups that share user-specific
identifiers in a dataset collected after recording the browsing history
of 100 users for two weeks. In this dataset, they detect 660 ID-
sharing groups and found domains with sensitive content (such as
health-related) that shared IDs with domains related to ad-trackers.

In [2] they aim to enhance the transparency in ad ecosystem
with regards to information sharing, developing a content-agnostic
methodology to detect client- and server-side flows of informa-
tion between ad exchanges by leveraging retargeted ads. By using
crawled data, authors collected 35448 ad impressions and identi-
fied 4 different kinds of information sharing behaviour between ad
exchanges. In [3], they study the diffusion of user tracking caused
by RTB-based programmatic ad-auctions, considering CSync as
the core component of such auctions and the primary factor of
the diffusion of privacy leaks. Results of their study show that un-
der specific assumptions, no less than 52 tracking companies can
observe at least 91% of an average user’s browsing history.

Contrary to these works, we conduct a first of its kind, full-scale
study of CSync by analysing a year-long dataset of 850 real users,
thus avoiding any biases from crawling websites using artificial
personas. Additionally, since nowadays mobile drives the majority
of the network traffic, our work is the first to study CSync in the
growing ecosystem of mobile devices.

8 SUMMARY AND DISCUSSION
One of the most popular techniques for trackers to share the IDs
they assign to users today is Cookie Synchronization, with which
different domains can merge their databases in the background.
However, syncing userIDs of a given user increases the user iden-
tifiability while browsing, thus reducing their overall anonymity
on the Web. In this paper, we build CONRAD: a holistic system to
detect CSync events, either when the synced IDs are available in
plaintext, or even when they are obfuscated (i.e., hashed, encrypted).
Using our detection mechanism, we are the first to explore CSync
in the mobile ecosystem and the first to analyze it in depth, using a
year-long dataset of real mobile users. CONRAD is able to capture
3.771% more CSync cases than related work.
Results:Our analysis of 263k CSync requests, syncing 22.3k unique
userIDs, led to the following findings:
• 97% of users are exposed to CSync at least once. The median
user is synced at least once within the first week of browsing.

• Ad-related domains participate in more than 75% of all CSync
through the year, learning as much as 90% of all synced userIDs.

• Three companies learn more than 30% of all userIDs, each.
• The median userID gets leaked to 3.5 domains, on average.
• The average user receives around 1 synchronization per 68
HTTP requests, and gets up to 6.5 of their userIDs synced.

• The number of domains that learn about the median user after
CSyncs grows by a factor of 6.75.

• We find 63 cases, where domains set cookies on the users’
browsers with userIDs previously set by other domains. This
universal identification model enables collaborating domains
to share data without background database merges.

• We find 131 cases of domains storing in cookies their CSyncs
results forming ID Summaries.

• 5% of users suffer from ID-spilling in their secure TLS traffic.
• several sensitive information (e.g., gender, birth dates) is passed
to the syncing domain along with the userID.
In addition to the classic, heuristics-based method applied to

collect the above findings, in this work, we proposed a novel, CSync
detection mechanism able to detect at real time CSync events, even
if the synced IDs are obfuscated. In particular, this online, machine
learning classifier can be trained to provide insights as to what each
HTTP connection is, and how likely it is to be performing CSync,
without the need to match the IDs to SET cookie actions. We use
the set of detected CSyncs from the heuristics-based method as
ground truth, to train our machine learning, cookie-less detection
algorithm. We were able to achieve high accuracy (84%-90%) and
high AUC (0.89-0.97), when non-ID related features were used.
Countermeasures: Nowadays, the most popular defence mech-
anism of CSync is the use of the traditional ad-blockers. Indeed,
since the vast majority (75%) of CSync takes place among ad-related
domains (see Figure 14), it is easy to anticipate that by blocking
ad-related requests, one can eliminate a large portion of the pri-
vacy leak that CSync causes. However, the all-out approach of ad-
blockers causes significant harm on publishers’ content monetiza-
tion models, forcing some of them to deploy anti-adblocking mech-
anisms [21, 27, 28] and deny serving ad-blocking users [26, 41, 43].

Mitigating mechanisms against CSync require a more targeted
blocking strategy, that would not blindly harm the current ad-
ecosystem. Instead, by applying detection techniques such as CON-
RAD, and blocking the specific traffic which has been found to
facilitate CSync, we believe that the harmful privacy leakage and
loss of anonymity of users due to CSync can be avoided, without
the dire consequences on publishers’ business models.
Impact: User data collection and sharing activities done without
users’ explicit consent can be illegal with hefty penalties imposed to
companies involved, as described in the new EU regulations for pro-
tecting user personal data and online privacy (GDPR and e-Privacy).
Thus, it is important to design practical web transparency tools such
as CONRAD, readily available to privacy researchers, regulators
and end-users to investigate personal data leakage and anonymity
on the Web, due to 3rd parties’ activities such as CSync [20].

ACKNOWLEDGEMENTS: The research leading to these results
has received funding from EU’s Marie Sklodowska-Curie and Hori-
zon 2020 Research & Innovation Programme under grant agree-
ments 690972, 786669 and 830927. The paper reflects only the au-
thors’ view and the Commission is not responsible for any use that
may be made of the information it contains.

10

REFERENCES
[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind

Narayanan, and Claudia Diaz. 2014. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. New York, NY, USA.

[2] Muhammad Ahmad Bashir, Sajjad Arshad, William Robertson, and Christo Wil-
son. 2016. Tracing information flows between ad exchanges using retargeted ads.
In Proceedings of the 25th USENIX Security Symposium.

[3] Muhammad Ahmad Bashir and Christo Wilson. 2018. Diffusion of User Tracking
Data in the Online Advertising Ecosystem. Proceedings on Privacy Enhancing
Technologies 4 (2018), 85–103.

[4] Dirk Bergemann and Alessandro Bonatti. 2015. Selling cookies. American Eco-
nomic Journal: Microeconomics 7, 3 (2015), 259–294.

[5] Juan Miguel Carrascosa, Jakub Mikians, Ruben Cuevas, Vijay Erramilli, and
Nikolaos Laoutaris. 2015. I always feel like somebody’s watching me: measuring
online behavioural advertising. In Proceedings of the 11th ACM Conference on
Emerging Networking Experiments and Technologies. ACM.

[6] Tom Chavez. 2010. Data: Deja Vu All Over Again?
https://adexchanger.com/considering-digital/tom-chavez/.

[7] Mozilla Developer. 2018. Document.cookie - Web APIs.
https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie.

[8] Disconnect. 2019. A faster, safer Internet is one click away.
https://disconnect.me/.

[9] Peter Eckersley. 2010. How Unique is Your Web Browser?. In Proceedings of the
10th International Conference on PETS’ 10.

[10] Jo el van Bergen. 2017. Mixed content weakens HTTPS.
https://developers.google.com/web/fundamentals/ security/prevent-mixed-
content/what-is-mixed-content.

[11] Steven Englehardt andArvind Narayanan. 2016. Online Tracking: A 1-million-site
Measurement and Analysis. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security (CCS ’16).

[12] European Commission. 2018. What is personal data?
https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-
data_en.

[13] Marjan Falahrastegar, Hamed Haddadi, Steve Uhlig, and Richard Mortier. 2016.
Tracking Personal Identifiers Across the Web.

[14] Famlam Fanboy, MonztA and Khrin. 2018. EasyList - Overview.
https://easylist.to/.

[15] Gemfury Dev Center. 2019. HTTPS: Is your URL string secure over SSL?
https://gemfury.com/help/url-string-over-https/.

[16] Arpita Ghosh, Mohammad Mahdian, R. Preston McAfee, and Sergei Vassilvitskii.
2015. To Match or Not to Match: Economics of Cookie Matching in Online
Advertising. ACM Trans. Econ. Comput. 2015 (2015).

[17] Phillipa Gill, Vijay Erramilli, Augustin Chaintreau, Balachander Krishnamurthy,
Konstantina Papagiannaki, and Pablo Rodriguez. 2013. Follow the Money: Un-
derstanding Economics of Online Aggregation and Advertising. In Proceedings of
the ACM SIGCOMM Conference on Internet Measurement Conference (IMC ’13).

[18] Roberto Gonzalez, Claudio Soriente, and Nikolaos Laoutaris. 2016. User Profiling
in the Time of HTTPS. In Proceedings of the 2016 ACM SIGCOMM Conference on
Internet Measurement Conference (IMC ’16).

[19] Google Developers. 2018. Cookie Matching. https://developers.google.com/ad-
exchange/rtb/cookie-guide.

[20] Costas Iordanou, Georgios Smaragdakis, Ingmar Poese, and Nikolaos Laoutaris.
2018. Tracing Cross Border Web Tracking. In Proceedings of the Internet Measure-
ment Conference 2018 (IMC ’18).

[21] Umar Iqbal, Zubair Shafiq, and Zhiyun Qian. 2017. The ad wars: retrospective
measurement and analysis of anti-adblock filter lists. In Proceedings of the 2017
ACM SIGCOMM Conference on Internet Measurement Conference (IMC’17).

[22] Jacob Kleinman. 2018. Stop Using WhatsApp If You Care About Your
Privacy. https://lifehacker.com/stop-using-whatsapp-if-you-care-about-your-
privacy-1825719172.

[23] Paul J Leach, Tim Berners-Lee, Jeffrey C Mogul, Larry Masinter, Roy T
Fielding, and James Gettys. 1999. Encoding Sensitive Information in URI’s.
https://tools.ietf.org/html/rfc2616#section-15.1.3.

[24] Bernard Marr. 2017. Where Can You Buy Big Data? Here Are The Biggest
Consumer Data Brokers. https://www.forbes.com/sites/bernardmarr/2017/
09/07/where-can-you-buy-big-data-here-are-the-biggest-consumer-data-
brokers/.

[25] Jonathan Mayer. 2011. Tracking the Trackers: Microsoft Advertising. The Center
for Internet and Society (2011).

[26] Brian Morrissey. 2015. Forbes starts blocking ad-block users.
https://digiday.com/media/forbes-ad-blocking/.

[27] Muhammad Haris Mughees, Zhiyun Qian, and Zubair Shafiq. 2017. Detecting
anti ad-blockers in the wild. Proceedings on Privacy Enhancing Technologies 2017,
3 (2017), 130–146.

[28] Rishab Nithyanand, Sheharbano Khattak, Mobin Javed, Narseo Vallina-Rodriguez,
Marjan Falahrastegar, Julia E. Powles, Emiliano De Cristofaro, Hamed Haddadi,
and Steven J. Murdoch. 2016. Adblocking and Counter Blocking: A Slice of the

Arms Race. In 6th USENIX Workshop on Free and Open Communications on the
Internet (FOCI 16).

[29] Lukasz Olejnik, Minh-Dung Tran, and Claude Castelluccia. 2014. Selling off User
Privacy at Auction. In 21st Annual Symposium Network and Distributed System
Security (NDSS’14).

[30] Kurt Opsahl and Rainey Reitman. 2013. The Disconcerting Details:
How Facebook Teams Up With Data Brokers to Show You Targeted
Ads. https://www.eff.org/deeplinks/2013/04/disconcerting-details-how-facebook-
teams-data-brokers-show-you-targeted-ads.

[31] Elias P. Papadopoulos, Michalis Diamantaris, Panagiotis Papadopoulos, Thanasis
Petsas, Sotiris Ioannidis, and Evangelos P. Markatos. 2017. The Long-Standing
Privacy Debate: Mobile Websites vs Mobile Apps. In Proceedings of the 26th
International Conference on World Wide Web (WWW ’17).

[32] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos P. Markatos. 2018.
The Cost of Digital Advertisement: Comparing User and Advertiser Views. In
Proceedings of the 27th International Conference on World Wide Web (WWW’18).

[33] Panagiotis Papadopoulos, Nicolas Kourtellis, and Evangelos P. Markatos. 2018. Ex-
clusive: How the (Synced) Cookie Monster Breached My Encrypted VPN Session.
In Proceedings of the 11th European Workshop on Systems Security (EuroSec’18).

[34] Panagiotis Papadopoulos, Nicolas Kourtellis, Pablo Rodriguez Rodriguez, and
Nikolaos Laoutaris. 2017. If You Are Not Paying for It, You Are the Product:
How Much Do Advertisers Pay to Reach You?. In Proceedings of the 2017 ACM
SIGCOMM Conference on Internet Measurement Conference (IMC ’17).

[35] Andrea Peterson. 2015. Bankrupt RadioShack wants to sell off
user data. But the bigger risk is if a Facebook or Google goes bust.
https://www.washingtonpost.com/news/the-switch/wp/2015/03/26/bankrupt-
radioshack-wants-to-sell-off-user-data-but-the-bigger-risk-is-if-a-facebook-or-
google-goes-bust/.

[36] Andrea Peterson. 2015. Bankrupt RadioShack wants to sell off
user data. But the bigger risk is if a Facebook or Google goes bust.
https://www.washingtonpost.com/news/the-switch/wp/2015/03/26/bankrupt-
radioshack-wants-to-sell-off-user-data-but-the-bigger-risk-is-if-a-facebook-or-
google-goes-bust/.

[37] Rainey Reitman. 2013. How To Opt Out of Receiving Facebook Ads Based on
Your Real-Life Shopping Activity. https://www.eff.org/deeplinks/2013/02/howto-
opt-out-databrokers-showing-your-targeted-advertisements-facebook.

[38] Matt Richtel. 2000. F.T.C. Moves to Halt Sale Of Database at Toys-
mart. http://www.nytimes.com/2000/07/11/business/ftc-moves-to-halt-sale-of-
database-at-toysmart.html.

[39] samy.pl. 2014. Evercookie - virtually irrevocable persistent cookies.
https://samy.pl/evercookie/.

[40] Judy Selby. 2016. The Impact of Big Data Decisions on Business Valuations.
https://datafloq.com/read/impact-big-data-decisions-business-valuation.

[41] Nicola Smith. 2016. How publishers are turning up the heat in the ad-blocking
war. https://www.theguardian.com/media-network/2016/sep/02/publishers-ad-
block-users-hide-content.

[42] Statista Inc. 2018. Percentage of all global web pages served to mobile phones
from 2009 to 2018. https://www.statista.com/statistics/241462/global-mobile-
phone-website-traffic-share.

[43] The Editors of Wired. 2016. How WIRED Is Going to Handle Ad Blocking.
https://www.wired.com/how-wired-is-going-to-handle-ad-blocking/.

[44] Narseo Vallina-Rodriguez, Srikanth Sundaresan, Abbas Razaghpanah, Rishab
Nithyanand, Mark Allman, Christian Kreibich, and Phillipa Gill. 2016. Track-
ing the trackers: Towards understanding the mobile advertising and tracking
ecosystem. arXiv preprint arXiv:1609.07190 (2016).

[45] World Wide Web Consortium (W3C). 2010. Same Origin Policy.
https://www.w3.org/Security/wiki/Same_Origin_Policy.

[46] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M. Pujol. 2016. Tracking
the Trackers. In Proceedings of the 25th International Conference on World Wide
Web (WWW ’16).

11

	Abstract
	1 Introduction
	2 Cookie Synchronization
	2.1 How does Cookie Synchronization work?
	2.2 Cookie Synchronization, Personalized Advertising & Privacy Implications

	3 Cookie Synchronization Detection
	3.1 Heuristics-based detection
	3.2 Cookie-less detection

	4 Dataset
	5 Privacy Analysis
	5.1 Initiation of Cookie Synchronization
	5.2 How are users exposed to CSync?
	5.3 Buy 1 - Get 4 for free: ID bundling and Universal IDs
	5.4 Spilling userIDs out of TLS
	5.5 Sensitive information leaked with userIDs
	5.6 Who are the dominant CSync players?

	6 Cookie-less Detection
	6.1 CSync in ID-sharing HTTP
	6.2 CSync in HTTP with ID looking strings

	7 Related Work
	8 Summary and Discussion
	References

