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ABSTRACT
Android’s app ecosystem relies heavily on third-party libraries as
they facilitate code development and provide a steady stream of rev-
enue for developers. However, while Android has moved towards a
more fine-grained run time permission system, users currently lack
the required resources for deciding whether a specific permission
request is actually intended for the app itself or is requested by
possibly dangerous third-party libraries.

In this paper we present Reaper, a novel dynamic analysis sys-
tem that traces the permissions requested by apps in real time and
distinguishes those requested by the app’s core functionality from
those requested by third-party libraries linked with the app. We
implement a sophisticated UI automator and conduct an extensive
evaluation of our system’s performance and find that Reaper in-
troduces negligible overhead, rendering it suitable both for end
users (by integrating it in the OS) and for deployment as part of
an official app vetting process. Our study on over 5K popular apps
demonstrates the large extent to which personally identifiable in-
formation is being accessed by libraries and highlights the privacy
risks that users face. We find that an impressive 65% of the permis-
sions requested do not originate from the core app but are issued by
linked third-party libraries, 37.3% of which are used for functional-
ity related to ads, tracking, and analytics. Overall, Reaper enhances
the functionality of Android’s run time permission model with-
out requiring OS or app modifications, and provides the necessary
contextual information that can enable users to selectively deny
permissions that are not part of an app’s core functionality.
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1 INTRODUCTION
Modern smartphones have become a treasure trove of sensitive user
data and personally identifiable information (PII) that is regularly
collected and exfiltrated by Android applications (“apps”) [36, 47, 48,
56, 63, 64]. At the same time, the limitations of Android’s permission
system have been explored extensively and various modifications
have been proposed [31, 47, 65, 72, 75]. The privacy risks that arise
from permission management are further exacerbated by the domi-
nating role that third-party libraries have achieved in the Android
app ecosystem by providing a revenue stream for developers [54].
On average, 41% of an app’s code is contributed by common li-
braries [49]. The prevalence of libraries has serious implications, as
they incentivize apps to request more permissions than needed [70]
and extensively leak personal information [2, 4, 5, 52, 62].

Android has been moving toward a more fine-grained permis-
sion control system with each major revision, showing considerable
improvements over the original design where users were presented
with confusing blocks of information at installation time [46]. Fol-
lowing the introduction of the new permission system in Android
6, users can now accept or reject a permission request at run time,
or revoke permissions at any time through the system’s settings.
However, recent work [39] demonstrated that users still do not fully
grasp how permissions work and found that they are more likely
to deny a permission request when given a detailed description
of their personal information that will be accessed and uploaded
(e.g., their actual phone number). Lin et al. [50] found that provid-
ing users with information on why a resource is being used can
alleviate their privacy concerns, while in a different context Wang
et al. [78] found that users perceive permissions differently when
they are related to an application’s core functionality.

Even though the new approach empowers users by enabling a
more precise granting of permissions, apps remain a black box with
hidden inner workings, thus preventing users from fully benefiting
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from its potential; as users cannot differentiate between permission
requests needed for the core functionality of the app and requests
from third-party libraries, they can not make informed decisions
regarding which permissions should be granted to each app. Moti-
vated by this rationale, we argue that a fine-grained access control
permission system should notify users of the origin of a permis-
sion request and explicitly state if it is needed by the app’s core
functionality or an integrated third-party library.

To bridge this significant gap we present Reaper, a system for
dynamically analyzing apps and inferring the origin of permission-
protected calls (PPCs) through inline hooking that enables passive
monitoring of the internals of the Android operating system. This
requires tackling several challenges, each of which is addressed by
one of the main components of our system. First, a dynamic anal-
ysis framework requires an efficient tool for traversing the graph
of each app with sufficient coverage. We develop UIHarvester, an
automation tool that utilizes hooks in the Android rendering pro-
cess for identifying interactive elements and their properties, for
traversing the app’s graph without a priori knowledge of the app’s
functionality or visual characteristics. UIHarvester introduces neg-
ligible overhead that is 30-38 times smaller than that of Android’s
UI Automator, and improves coverage by ∼ 26% compared to the
tool that achieved the highest coverage in a comparative study [35].

PermissionHarvester is responsible for the main functionality
of Reaper, as it hooks PPCs at run time and extracts the current
stacktrace. Since the permissions required by functions are not
the same across all Android versions, with newer versions not
requiring permissions for certain calls that access PII, our tool au-
tomatically recognizes the OS version and adjusts its functionality
accordingly. Even though PPCs protect device resources, common
users do not have complete knowledge of Android’s documenta-
tion and internals and are mainly concerned with apps accessing
personally identifiable information. As such, PermissionHarvester
also monitors PII access regardless of whether the call is protected
by a permission or not. Extracted stacktraces are processed for
identifying the origin of calls that are protected by permissions or
access PII. Our approach is not affected by encryption techniques
that may attempt to hide the presence of third-party libraries and
the exfiltration of PII. Furthermore, Reaper does not require any
modifications to the OS and does not depend on any sort of instru-
mentation, thus, introducing minimal performance overhead (we
only require root access). Our system can be incorporated as part
of the Android Open Source Project for enriching the contextual
information shown to users.

To explore the potential benefits of our system, we use Reaper to
analyze over 5K popular Android apps, and find several alarming
results regarding the extent of third-party libraries’ use of per-
missions and permission-protected calls. Indicatively, our study
reveals that for 90% of the apps third-parties initiate more permis-
sion protected calls than the core app itself. We find that on average
65% of used permissions are needed by third-party libraries, and
34% of the apps never issue PPCs from their core code as the re-
quested permissions originate solely from library code. To make
matters worse, when it comes to dangerous permissions 48-59% of
the requests originate from third-party libraries. For permission-
protected calls that reach PII, in 59% of the apps third-party libraries
use getRunningAppProcesses(), which can lead to precise user

identification [23]. We also find many libraries accessing PII from
non-permission protected calls. Finally, we explore how the ori-
gin information is augmented by accounting for the library type.
We find that at least 37.3% of PPCs and 28.6% of PII accesses that
originate from libraries are exclusively intended for functionality
related to ads, tracking and analytics and could safely be denied by
users without preventing the apps’ intended functionality.

The key contributions of our work are the following:
• We develop Reaper, a real-time permission analysis system that
infers the origin of calls to permission-protected resources or
non-permission-protected sensitive PII. Our system can augment
Android’s run time permission system by enriching the contex-
tual information provided to users.
• We experimentally evaluate our system and find that the over-
head introduced is minimal, rendering it suitable for analyzing
apps at a large-scale, or integrating in user devices.
• We use Reaper to explore the interaction between libraries and
Android’s permission system in depth. We provide a fine-grained
analysis of PPCs and PII access by third-party libraries in the wild.
Our findings shed light on the alarming extent to which libraries
dominate such calls, and motivate the need for incorporating
origin information in permission requests.
• We publicly released our source code and the datasets used at
http://www.reaper.gr .

2 BACKGROUND AND MOTIVATION
The incorporation of third-party libraries allows app developers
to take advantage of useful existing functionality and also tap into
an alternative revenue stream without the need to charge users
for the app itself. While this may appear beneficial to end users
as they are able to obtain apps seemingly for free, it suffers from
the inherent privacy risks of the prevailing paradigm of services
being free because users are the product [3] and “pay” with their
personal data [54]. Not only have such libraries become prevalent
(49% of apps contain at least one ad library [57]), but the risks they
present [44] increase through time as they ask for increasingly more
dangerous permissions [32]. This necessitates the deployment of
functionality that can differentiate between permissions required
by the actual app and those requested by third-party libraries. Trac-
ing permission requests back to third-party libraries allows for
enriching the contextual information presented to users.

While libraries can offer useful functionality to app developers,
they may also surreptitiously add (potentially dangerous) permis-
sions without the developer being explicitly informed. As such,
users cannot rely on developers’ intentions or safe practices for
ensuring appropriate access to their data. Indeed, Android supports
the merging of multiple manifest files, as each APK file can contain
only one manifest file. While this functionality is meant to facilitate
the inclusion of external libraries, it also allows third-party libraries
to silently include permissions without the developer’s approval.
To make matters worse, developers have to explicitly and proac-
tively include specific commands (tools:node="remove") in their
manifest to prevent libraries from including specific permissions.

To verify that this occurs in practice, we conduct an exploratory
experiment with popular libraries. We create a test app and sepa-
rately integrate each library; after compilation we extract the final
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Figure 1: Overview of Reaper’s architecture.

manifest file to see which permissions have been included by the li-
braries without any form of notification. First, we look at one of the
most prevalent libraries [18], namely Google Play Services. Google
offers multiple libraries and we test Firebase and GMS (which in-
corporate functionality for analytics, ads etc.) and find that they
add six and eight permissions respectively. We investigate whether
libraries also merge dangerous permissions, and find that Instabug
and Paypal silently include three (read,write access to External Stor-
age and Record Audio) and one (Camera) dangerous permissions
respectively. This simple experiment highlights how Android offers
functionality that can be misused by third-party libraries to silently
obtain access to permissions that can affect the user’s privacy or
the device’s normal operation. It is not meant to be exhaustive and
many more libraries may be exhibiting such behavior in practice.

3 REAPER DESIGN AND IMPLEMENTATION
Reaper’s primary goal is to distinguish which permissions are
needed by the core functionality of the app and which by integrated
third-party libraries. Many advertising and tracking companies
freely provide preconfigured libraries and online tutorials on how
to integrate them. Moreover, previous work [44] found that adver-
tising libraries are prone to downloading code over HTTPS and dy-
namically loading and executing this code using the DexClassLoader
class. Even though dynamic code loading offers useful functionality
to developers, it can also be used to evade static analysis [59]. Fur-
thermore apps may also hide their functionality through common
obfuscation and encryption techniques [11, 36].

We leverage the hooking mechanism of Xposed [1] to build a
dynamic analysis system that is designed to overcome the afore-
mentioned obstacles. We require root access but do not rely on
any OS modification, such as changing and recompiling the AOSP
image, allowing us to apply it to any stock Android version. Figure 1
shows an overview of Reaper, which consists of three components:
(i) UIHarvester (Section 3.1) a sophisticated UI automation tool
for exercising apps, (ii) PermissionHarvester (Section 3.2) for
hooking and monitoring the stacktrace of functions that lead to
permission checks, and (iii) StackAnalyzer (Section 3.3) for ana-
lyzing stacktraces and inferring if they originate from a third-party
library and of what type. If our system is adopted as part of an
official app vetting process, or used by other researchers for dynam-
ically analyzing apps, then all three components should be used, as
shown in the gray box. If Reaper’s functionality is integrated in the
OS for augmenting the permission system, then only two of those
components are required, as shown in the dotted line.

3.1 UI Harvester
A significant challenge when performing dynamic analysis on
mobile apps is the traversal of the app’s graph through the sim-
ulation of user interactions, without any a priori knowledge of
the interactive content that will be displayed in the app. Previous
work [24, 27, 33, 45, 53, 60, 61, 71, 74, 81, 85, 86], has explored the
dynamic traversal of an application from different perspectives,
such as achieving high traversing coverage or identifying malicious
behavior. Unfortunately apart from requiring static analysis of the
apk [24, 27, 45, 60, 71, 74, 81, 85], theymay require some form of app
instrumentation [27, 45, 60], or OS code modification [53, 61, 85],
or are pinned to a specific Android version [24, 33, 85, 86].

UI Automator [21] is a useful tool available from the Android
SDK that offers functionality similar to what we require; it can
dump the interactable objects of the display and provide additional
information about them. However, UI Automator presents two
major disadvantages that render it unsuitable for our needs. First,
if the app uses the WindowManager.LayoutParams.FLAG_SECURE
option, UI Automator has to respect this specific flag and cannot
output information about the objects being displayed. This flag is a
security feature that treats the contents of the window as "secure"
and prevents taking screenshots or being viewed on non secure
displays [22]. This flag is not uncommon and is used to secure apps
(e.g., PayPal) from side channel attacks, and can be used by apps or
third-party libraries that want to evade dynamic analysis. Second,
the performance overhead introduced is significant, rendering UI
Automator unsuitable for a large scale analysis (details in Section 5).

To overcome the aforementioned restrictions, we developed a
plug & play prototype that simulates user interactions, which
fulfils the following design constraints:
• No requirement for a priori information on the content that will
be displayed in the app.
• No requirement for decompilation or static analysis of the apk
file, or access to the app’s source code.
• No requirement for code modification (app or OS).
• No inefficient and ineffective random input generation approaches.
• Support for a wide range of Android versions.

Harvesting UI elements. Android renders the contents of the
display based on a specific procedure, where each activity receiving
focus provides the root node of the layout hierarchy and draws
its layout. Drawing starts at the root node of the layout tree and
is traversed in a top-down order. Android also provides the View
class, which is the basic building block for UI elements. While
traversing the tree each View is rendered in the appropriate region.
Rendering begins with a measure pass and continues with a layout
pass. The former, is responsible for the dimension specifications of
each View, while in the latter each parent positions all the children
based on the measurements obtained during the measure pass.
After this two-step process, the onDraw() function of the Canvas
is called for rendering the contents of a View object. Whenever
something changes on the display, View notifies the system and,
depending on the changed properties, either the invalidate() or
the requestLayout() functions are called. The former calls the
onDraw() for the specified object while the latter instantiates the
procedure from the beginning. Since onDraw() is called last before
the actual rendering, we hook it to capture the displayed elements.



Identifying interactable objects. Having access to a View ob-
ject enables us to use every method of the View class [14] from the
Android SDK. This allows us to detect what type of elements are
contained in the View object (e.g., TextView, Button, Image), as
well as the corresponding metadata such as the text displayed, the
resource-id, the index, and horizontal/vertical scrolling. To identify
whether the elements of the View object are user interactable, we
use the getImportantForAccessibility(), hasWindowFocus()
and isShown()methods on each object. Moreover, we also find the
position and the coordinates of each object by using the methods
getLocationInWindow() and getLocationOnScreen().

Traversing applications.UIHarvester hooks into the onDraw()
function and exports all the information to logcat. Using a Python
parser we extract this information and use all the interactable ob-
jects for performing a breadth-first traversal of the app. Since we
know the type of each element as well as its coordinates, we utilize
the Android Debug Bridge for performing the appropriate actions
(e.g., tap, swipe, keyevents, etc.). Every time a new View is drawn
on the display (e.g., after a button is pressed), UIHarvester exports
its elements. By obtaining all the Views that have been drawn on
the display, we can recreate the app’s UI graph.

Login.Many apps provide a login option for a more personalized
experience, while others require users to login before using the app.
Not being able to handle such cases significantly limits the coverage
and usefulness of any UI automator. As such, we implement an
automated login feature that leverages Facebook’s SSO.

Setting a threshold. Due to the dynamic nature and content
of Android apps, it is possible for UI automators to get stuck in
an infinite recursion of state transitions for certain apps. A simple
example is the "back to menu" button. We handle this case by
checking whether the elements (and their properties) have already
been encountered in the exact same order. A case that can not be
handled by our approach is when an activity renders content that
is downloaded from the web and changes between transitions. As
such, we need to impose a threshold for terminating the traversal
of these apps. Since our goal is to execute as many permission-
protected functions as possible, we set a rule to stop the traversal
when five minutes pass from when the last permission request
occurred. While this could potentially result in a loss of certain
requests, tracking and advertising libraries often perform their
functionality either at launch time or after the user logs in [7, 55].

3.2 Permission Harvester
This is the core component of Reaper and is responsible for monitor-
ing function calls and logging the current stacktrace for subsequent
analysis. Since blindly hooking into every function call would result
in an increase of the overhead without providing any additional
information, we first need to identify the functions that lead to a
permission request from the Android Server.

Permission mappings. The constant evolution of Android’s
permission system has led to many changes as well as compatibility
and security issues regarding how each permission works [84]. Due
to the differences between API versions, functions may lead to
other permissions or may no longer be permission-protected across
versions. For instance, the getScanResults() function from the
net.wifi.WifiManager class only needs the ACCESS_WIFI_STATE

permission up to API 22. Since API 23, this method also requires
access to the device’s location through ACCESS_COARSE_LOCATION
or ACCESS_FINE_LOCATION. The Stowaway project [41] used static
analysis in Android 2.2 to determine an app’s API calls, and provided
a map that identifies what permissions are needed for each API call.
Recently PScout [26] and AXPLORER [29], statically analyzed the
Android Framework, extended themappings for newer versions and
corrected previous uncertainties. When comparing the mappings of
PScout and AXPLORER, we find various differences in their results;
in API 22 AXPLORER registers the function getWifiState() in
net.wifi.WifiManagerwith the ACCESS_WIFI_STATE permission.
On the contrary, PScout registers the same function with the DUMP
permission. As such, it is important to dynamically validate the
permission mappings as we discuss below.

Mappings selection. Our system identifies the OS version and
adjusts the permission mappings, using AXPLORER’s results for
APIs 16 (Android v. 4.1) to 25 (v. 7.1) by hooking the appropriate
functions. We excluded API 20 as AXPLORER does not provide
mappings for this version. To facilitate our system’s description we
will refer to an example permission-protected call and the induced
hooks as illustrated in Figure 2. By monitoring the PPCs 1 , we
can identify the corresponding permission through AXPLORER’s
list and the origin of the function call through the stacktrace of the
current thread. The Java stacktrace holds every execution until a
Binder transaction occurs, and also reveals the path and exact Java
file (inside the apk) from which the call originated 2 .

Validating permission mappings. To dynamically validate
the mappings from previous work, we need to hook the appro-
priate functions of the Android Server. The checkPermission()
and checkpermissionWithToken() functions (found in the class
ActivityManagerService) grant or deny access to resources ac-
cording to the app’s permissions. Prior to API 22 access to these two
functions is feasible by directly hooking them. Since API 22, a differ-
ent entry point is needed for reaching them. To reach the methods
and classes of the Android framework we hook the systemMain()
function of the app.ActivityThread class. Within that hook we
can monitor the permissions that each app and process request at
run time by encapsulating the hooks for these functions.

Handling asynchronous calls. In Android different resources
are handled by different System Services. For an app to access such
information 1 , a new thread of the appropriate service manager
is created and this newly created thread calls the validation check
mechanism 2 . During this process, Android Binder is responsible
for passingmessages between entities, using the onTransact() and
execTransact() functions. Even though the functions involved
in permission validation are asynchronous calls, we know a priori
the functions that will lead to a permission request 1 and can call
them sequentially and map each function call with the appropriate
permission check that occurs on the Android Server 2 . To this
end we created a mock application that executes in a sequential
manner all the permission-protected calls of the Android SDK.

In practice asynchronous callbacks are frequently used in An-
droid, and a library can register its functionality, or part of it, as a
callback. Even though the registered callback executes in a separate
thread, the stacktrace of this newly created thread contains the
origin of the embedded executed code. Since PermissionHarvester
monitors the execution of PPCs independently of asynchronous



 Hook(“TelephonyManager”, “getDeviceid” )
BeforeHookedMethod 
{
    Log (Package Name, Class, Function, PID, UID, Stacktrace); 
} 
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1 
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 Hook(“server.am.ActivityManagerService”, “checkPermission” ) 
AfterHookedMethod 
{ 
    Log (Package Name, Class, Function, PID, UID, Permission, Permission Status,
Stacktrace); 
} 

 Hook(“server.am.ActivityManagerService”,  “checkPermissionWithToken” ) 
AfterHookedMethod 
{ 
    Log (Package Name, Class, Function, PID, UID, Permission, Permission Status,
Stacktrace); 
} 

PermissionHarvester 
Class: android.location.LocationManager  
Function: getLastKnownLocation() 
Permission: ACCESS_COARSE/FINE_LOCATION
Class: android.telephony.SmsManager  
Function: sendDataMessage() 
Permission: SEND_SMS
Class: android.telephony.TelephonyManager  
Function: getDeviceId()
Permission: READ_PHONE_STATE

. 

. 

. 

 Hook(“android.app.ActivityThread”, “systemMain” )
Android Server Hook Application Hook 

2 

Class: android.net.ConnectivityManager 
Function: getAllNetworkInfo() 
Permission: ACCESS_NETWORK_STATE

Figure 2: Application Hook is PermissionHarvester’s core hooking mechanism that monitors PPCs and inspects stacktraces
for extracting their origin. Android Server Hook is only used for validating the permission mappings.

0 java.lang.Thread.getStackTrace(Thread.java:580)'
1 android.location.LocationManager. getLastKnownLocation() '
2 com.appodeal .ads.an.e(SourceFile:243)'
3 com.appodeal.ads.d.b.<init>(SourceFile:180)'
4 com.appodeal.ads.d.i.a(SourceFile:295)'
5 com.appodeal.ads.d.i.a(SourceFile:105)'
6 com.appodeal.ads.d.i.doInBackground(SourceFile:37)'
7 android.os.AsyncTask$2.call(AsyncTask.java:292)’
...
13 java.lang.Thread.run(Thread.java:818)'

Listing 1: Example stacktrace for getLastKnownLocation().
The code that initiated the PPC through an asynchronous
call belongs to "com.appodeal" package, which corresponds
to the Appodeal third-party library.

calls, the StackAnalyzer component can identify the true origin of
the PPC. We illustrate this process with an example of a library
registering a PPC in an asynchronous callback. Listing 1 presents a
callback that executes the getLastKnownLocation() function needed
by the "com.appodeal" library. This library creates a subclass of
an AsyncTask and overrides the method doInBackground(). Even
though the code that is placed in this method is executed in a dif-
ferent thread, thus obscuring whether the core app or the library
registered the callback, we can still successfully identify whether
the executed code belongs to a third-party library.

Non-permission-protected PII leaks. It is important to note
that not all PII is protected by permissions, and library developers
may take extra measures to hide the presence of PII leaks and the
surreptitious exfiltration of data (i.e., obfuscation, encryption and
dynamic code loading). As PII can enable user tracking, it is crucial
to identify the origin of such requests. Recent work [56] released an
extensive list with such device characteristics that are leaked. We
manually map those characteristics with their appropriate function
calls and find that 8 such functions are not permission-protected.
By extending Reaper to support these calls, our system is able to
identify the origin of PII leaks regardless of the call being protected
by a permission or not. While this is not part of our work’s main
focus, we include this information to further highlight the invasive
behavior of third-party libraries in our study in Section 6.

Our approach can reveal privacy leakage without the need to
perform deep packet inspection, thus, bypassing the obstacle of
attempting to identify data exfiltrated in an obfuscated form, which

has stifled previous work on PII leakage. For instance, in our ex-
periments we found two apps (com.sevideo.slideshow.videoeditor,
com.fourvideo.videoshow.videoslide) that integrate the XavirAd
library, which downloads a dex file from a remote server, collects
PII and sends them encrypted over the network [11].

3.3 Stack Analyzer
Apart from being useful for debugging, stacktraces can be used
during run time execution since they contain essential information
about the current thread. We opted for this approach as it provides
a straightforward solution for identifying the origin of a function.
The stacktrace contains a path to the source file and has four fields
of interest: the package name, the class from which the method was
called, the actual method and the file name of the source code. Stack-
Analyzer processes the stacktraces of important calls and checks if
the package name of a known third-party library exists in the path
of the stacktrace’s function call. Even though library code can be
obfuscated (e.g., classes, functions, etc.), by default library package
names remain intact since developers need to know which library
to link in their app during the build process. To verify that stack
inspection is effective in practice, we manually examined the pack-
age name of all the stacktraces collected from our experiments (see
Section 4) and found that only 1.14% have an obfuscated package
name, preventing us from identifying their origin. This is further
corroborated by Wermkeet al. [79], who conducted an obfuscation
detection analysis on 1.7 million apps from Google Play and found
that even for obfuscated libraries larger scopes remain identifiable
in package names (e.g., com.google.ads.*).

Third-party library package names. Li et al. [49] conducted
a large scale analysis of 1.5 million apps from Google Play, in order
to identify common Android libraries. Even though their approach
does not handle obfuscated code, they identified 1,353 third-party
libraries. LibScout [28] bypassed the limitations of obfuscated code
by using a variant of Merkle trees and performing profile-matching
between known third-party libraries and the contents of the apk
file being tested. Since the results provided by LibScout are bound
by the dataset they are trained with, it is possible for LibScout to
miss some of the libraries that are integrated in the application.
Indeed, during our experiments we came across such an example:
AppsFlyer [15] a well knownmobile tracking library. StackAnalyzer



 0.2

 0.5

 1

 2

 4

       

Emulator
P

P
C

 E
x
e
c
u
ti
o
n
 (

m
s
) 

- 
lo

g
Vanilla Reaper

 0.5
 1
 2
 4
 8

 16

TelephonyM
anager.	

	

getD
evic

eId

Acti
vit

yM
anager.	

	

getR
unningAppPro

ce
ss

es

Connecti
vit

yM
anager.	

	

getA
cti

ve
Netw

orkI
nfo

W
ifiM

anager.	
	

isW
ifiE

nabled

W
ifiM

anager.	
	

getS
ca

nResu
lts

W
ifiM

anager.	
	

getC
onfig

ure
dNetw

orks

Nexus device

 

Figure 3: Performance overhead of PermissionHarvester, in-
cluding the overhead for the hook.

uses the combined results of both systems to create a coherent list
of package names and to identify at runtime whether the stacktrace
belongs to code originating from a third-party library.

Library classification. In practice, developers may use code
from a third-party library that is integral to the app’s functionality.
By classifying the type of the library from which the permission
request originates, we obtain more detailed information regarding
the nature of the call and whether it can be attributed to code that
is necessary for the app’s intended functionality; e.g., by differenti-
ating calls from an ad library to those from an app-development
library. By disambiguating the origin of the calls Reaper further
augments the contextual information presented to users and guides
them towards granting “useful” permissions. Specifically, our sys-
tem uses information from two sources [13, 49] to ascertain the
category of the library from which each third-party call is initiated
at runtime and provide that information to the user.

4 DATASET & EXPERIMENTAL SETUP
We downloaded free apps from Google Play using Raccoon [20]
and performed the majority of experiments using emulators. We
opted for an emulator for the ability to deploy multiple virtual
machines and analyze a large amount of apps. While third-party
libraries may be able to infer the presence of a virtualized execution
environment and alter their behavior, previouswork on app analysis
has also relied on emulators [68, 69]. To make the environment look
more like an actual device we installed the Google Play services
and signed in with a legitimate Google account. We conduct the
experiments in Android API 22, as it is the API with the most
accurate permission mappings available – AXPLORER’s mappings
for API 23 are incomplete [17]. Overall, we selected the top 300 apps
(or as many as were available) from each category, and downloaded
a total of 5457 from 38 categories.

5 PERFORMANCE EVALUATION
Here we evaluate our system’s performance and measure the over-
head introduced by each of the main components. We also compare
UIHarvester to popular tools and demonstrate the advantages of
our approach. We perform experiments using both an emulator and
a Google Nexus 6 device, running the AOSP image with API 22.
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Figure 4: Performance overhead comparison between
Reaper’s UIHarvester and UIAutomator.

PermissionHarvester overhead. The same code handles ev-
ery PPC. Using a mock app that individually issues six PPCs from
different managers, we measure the time needed for each PPC with
and without PermissionHarvester present. In the vast majority of
cases the function calls tested had an execution time of less than
1ms and 4ms for the emulator and the real device respectively. Since
System.currentTimeMillis() does not produce readings of less
than 1ms, we used the System.nanoTime() to extract a more ac-
curate representation of the execution time. Figure 3 presents the
results from 50K executions of the app.We observe that even though
the same code applies to every hooked PPC, the induced penalty
varies between 0.18-0.45ms for the emulator and 1.93-3.77ms for
the Nexus device. The reason for this is that each PPC can result
in stacktraces of different sizes. While System.nanoTime() is sig-
nificantly more accurate than System.currentTimeMillis(), it
is a relatively expensive call. It depends on the underlying archi-
tecture and can take up to 100 CPU cycles while measuring with
millisecond precision takes only 5-6 CPU cycles. Apart from being
more expensive, it also exhibits deviation in its execution time,
which is reflected in the larger deviation of getRunningProcess()
and getDeviceID(). Overall, the overhead for the actual hook is
0.0075ms [6] and the remaining overhead is due to the system call
required for logging the stacktrace.

UIHarvester overhead.We measure the induced overhead of
UIHarvester, by checking the extra time needed to render the con-
tents of the display. We use the “Displayed” value from logcat,
which represents the time elapsed between launching an activity
and drawing its contents. For this experiment we selected 40 apps
of different sizes and varying loading times, and measured the time
needed to launch the main activity with and without UIHarvester.

As shown in Figure 4 the penalty in the emulator is between
0.3%-21% with an average of 6.55%, and depends on the number of
elements drawn in the display. In the device the penalty is 0.16%-
56.59% with an average penalty of 7.8%. In the worst case, the
overhead to render the contents of a heavy View is 140ms for the
emulator and 386.1ms for the device, which is acceptable for fully
automated dynamic analysis. We also compare to the time needed
to extract information about the display using UIAutomator, which
offers similar functionality. On average UIHarvester only requires
40.19ms for the emulator and 67.29ms for the device. UIAutomator
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takes over 1,546ms and 2,001ms to extract the elements respectively,
resulting in a 30 to 38-fold increase. Thus our tool offers superior
performance while being more effective for this study.

UIHarvester Coverage.While GUI exploration and coverage
in Android can be measured using different techniques (line cover-
age, activities, crashes, etc.) we opted for counting the interactive
elements since it can be applied to both open and closed-source
apps without the need for instrumentation. Choudhary et al. [35]
evaluated six input generation techniques and compared them to
Android’s Monkey. They found that the Monkey fuzzer was the
best option, achieving a 40% coverage. To evaluate UIHarvester’s
coverage, we obtained the same set of apps from [35] and compared
the interactive objects found by UIHarvester andMonkey; we tested
the 32 apps that remain functional. Since Monkey can only perform
random clicks and does not count the interactive elements, we used
the technique employed in UIHarvester to extract them. For a direct
comparison, we set a timeout of 5 minutes and configured the time
required to generate input events to be consistent between both
tools. In Figure 5 we plot the number of objects found by Monkey
(averaged over three runs) and the objects found by UIHarvester.
Overall, UIHarvester improves coverage by 25.98%.

Compatibility between versions. A common limitation of
analysis tools is being pinned to a specific Android version. By de-
signing Reaper to have minimum dependencies, we maintain com-
patibility across APIs. We verified this by analyzing ten backwards-
compatible apps on the four most common Android versions [12]
and found that all Reaper components remained fully functional.

6 PERMISSION ANALYSIS
We study 5457 apps in order to understand the use of PPC and
access of PII by third-party libraries in practice. Our study dynam-
ically examines the origin of such calls, enabling a fine-grained
exploration of the corresponding privacy risks.

Table 1: Issues that resulted in certain apps not being tra-
versed during our experiments.

Apps Without Interaction 89- Addon (41), Launcher (31), Plugin (9), Theme (5), Widget (3)
Manual Login Required 45
Installation Failure 37
Device Specific 15
Emulator Detection 1
Root Detection 1
Malfunction / Crash 156
Total 344

Apps without PPC. In our experiments 315 apps did not issue
a PPC call during their analysis. Furthermore, we were not able
to traverse an additional 344 apps and obtain a PPC stacktrace.
Table 1 breaks down the numbers for the issues that resulted in
this; 89 apps could not be traversed due to their type, as they do not
contain launchable activities and there is no direct interaction. Out
of the remaining, 45 required a manual login, 37 failed during in-
stallation, 15 apps were for a specific device brand or only available
for certain CPUs/GPUs and 2 apps did not execute because of the
device’s environment. Also, 156 apps malfunctioned at launch time.
To understand whether Reaper affects these 156 apps, we tested
them without our framework, and observed that in both cases the
apps remained non-functional. When executed without the Xposed
framework, 155 apps continued to crash. While one app appears
to be detecting Xposed, this can be trivially bypassed by renaming
the Xposed package. Thus, practically, our experimental environ-
ment only prevented one app from running. To analyze apps that
perform emulation or root detection, Reaper can also be used with
a real device and the root requirement can be hidden using known
root-hiding techniques [9]. Interestingly, certain apps that can not
be traversed due to their type still perform PPCs (at launch time).

Third-party library use. In Figure 6 we explore the use of
PPCs and their corresponding permissions by libraries. We observe
that for 521 apps PPCs are only used by the app’s core function-
ality, while for 1,642 apps every PPC originates from third-party
libraries. While there is varying behavior in the remaining 2,635
apps, there is significant use of PPC throughout. Overall, 65.22%
of the permissions requested are not from the apps’ core code, but
are requested by the libraries. These results verify our intuition
that PPCs and their underlying permissions are heavily used by
third-party libraries, with 34% of these apps never calling them
from their core code. This highlights the benefit of adopting the
functionality offered by Reaper for informing users about the origin
of permission requests and enabling more fine-grained control.

Function and permission origin. To better understand the
origin of each function, we explore their use across all apps. As
shown in Figure 7, use of permission-protected functions by li-
braries remains high and certain functions are never used by core
functionality. For instance, one such function that also accesses PII,
is getSubscriberId() which returns the device’s IMSI.

In Figure 8 we plot the 30 most used functions. We find that these
typically are calls that return device specific information, such as
Device-IDs, Network-Info, SSIDs, Location, Apps-installed, which
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Figure 8: Breakdown for the 30 most used PPCs.
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Figure 9: Breakdown for the 30 most used permissions.

are considered PII and are used by advertising and tracking com-
panies. We observe that the getSubscriberId() function which
is also included in the top 30, requires the READ_PHONE_STATE per-
mission which is one of the permissions considered dangerous by
the Android developer guide. In Figure 9, we plot the 30 most used
permissions. We manually mapped these permissions to their pro-
tection level from the official Android source code [19] and found
that third-party libraries also use permissions that fall in different
protection levels such as signature, privileged, installer, develop-
ment and dangerous. The use of the four dangerous permissions
(i.e., ACCESS_COARSE_LOCATION, ACCESS_FINE_LOCATION,
GET_PHONE_STATE, READ_ACCOUNTS) ranges from 48% to 59% for
third-party libraries. This means that for these apps when users are
presented with a dangerous permission request at run time, roughly
half the time the permission does not originate from core code.

Third-party library integration. To understand how many
third-party libraries are used inside apps, we calculate the fraction
of distinct third-party libraries using PPCs, as well as the total
fraction of PPCs attributed to 3rd parties or core functionality. In
Figure 10 (left) we observe that 30% of our dataset contains at least
two distinct third-party libraries that initiate PPCs. Moreover, as
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Figure 11: Number of permissions used across the apps that
include the 4 most used libraries.

can be seen in Figure 10 (right), for 90% of the apps third parties
initiate more PPCs than the app’s core code.

Permission variation.We found cases where a library uses a
different number of permissions across apps. In Figure 11, we select
four of the most used libraries and plot the number of permissions
used across all apps. One possible reason for this could be because
UIHarvester was not able to reach a level of coverage that would
trigger all the permission requests. However this will not always be
the case since apps contain different versions of the same library,
which may offer different functionality. Furthermore, libraries may
also adjust according to the number of permissions granted [16].

PII access.While not our main focus, an important aspect of our
analysis is exploring the extent of third-party libraries accessing
PII; the origin information provided by Reaper results in a more
fine-grained and precise view of PII leakage when compared to
prior studies that explore apps’ behaviors as a whole. We map
function calls to PII based on the identifiers provided by prior
work [56, 63] and the Android SDK documentation, and analyze
the information provided by Reaper. Figure 12 shows all the func-
tions that access PII, whether through a permission-protected call
(blue circles) or not (red circles). The size of the circle denotes
the number of apps that contain the respective library and issue
the corresponding function call. Due to space constraints we only
include the 13 most popular libraries. We find that third-party li-
braries access the non-protected calls more frequently than the
permission-protected calls. As users can be fingerprinted from the
information returned by these functions, it is troubling that Android
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Figure 12: PII leakage from themost popular third-party libraries (sorted in descending order) broken down to the correspond-
ing function call used. Blue circles denote PII being accessed through permission-protected calls, while the red circles indicate
PII access by functions that are not permission-protected. The size of the circle denotes the number of apps in each case.

does not enforce a permission requirement. We argue that all calls
that lead to PII should be permission-protected, allowing users to man-
age what information can be accessed by apps and third parties. The
getRunningAppProcesses() function can also be called without
the GET_TASKS permission. It returns a list of running processes and
is being used by 3,218 (59%) apps. This is also a significant privacy
threat, as previous work has shown that tracking companies can
potentially identify users when as few as 4 apps are known [23].
Despite being discontinued for APIs ≥ 23, it remains active for
older versions, with 66.4% of devices running APIs ≥ 23 [12].

Library classification.To further enrich the origin information,
Reaper classifies the type of libraries initiating each monitored call,
which allows our system to further disambiguate the origin of calls.
In Figure 13 (left) we present the coarse-grained classification of the
type of library from which each call originated. Libraries that have
multiple labels are counted in all respective categories. For a subset
of the libraries we also obtain fine-grained information regarding
the functionality that they offer, which we present in Figure 13
(right). While we provide a coarse-grained classification of all the
calls initiated by libraries in our dataset, we are not able to obtain
fine-grained labels for all the libraries identified in our experiments.
Specifically, we obtain labels for 84 out of the 234 libraries that issue
PPC calls, and for 75 of the 203 third-party libraries that access
PII. As can be seen in Figure 13 (right), analytics-based libraries
are responsible for the most PPC calls and PII accesses, while ad-
related libraries issue more calls when the different subcategories
are aggregated. It is also evident that specific libraries that ease the
app development process are very common.

Using the coarse labels, we find that 15,610 PPCs and 21,322
PII accesses originate from libraries that are exclusively labelled as
developer libraries, indicating that they are needed for the app’s core
functionality and should likely be granted. On the other hand, 1,287
PPCs and 845 PII accesses originate from tracking or ad libraries,
and can be safely denied. Furthermore, for libraries with multiple
coarse-grained labels, we leverage the fine-grained labels and find
that an additional 9,129 PPCs and 5,240 PII calls can be safely denied
as they are used exclusively for analytics and advertising. Three of
the most used libraries (facebook, google.gms and firebase) cannot
be excluded using fine-grained labels as they cover a wide spectrum

of functionality and contain numerous labels; however, for all three
we can inferwhich aspect of their functionality is used in each call as
the respective package name (e.g., com.google.android.gms.ads)
explicitly denotes it (obviously, this approach cannot be applied to
untrusted or unknown libraries). As such, the stacktraces allow us
to identify an additional 10,424 PPCs and 11,580 PII calls than can
be denied as they are used for analytics, ads, and tracking.

Overall, out of the 55,859 distinct PPC calls Reaper would enable
users to safely deny 20,840 (37.3%) PPCs without preventing apps
from leveraging third-party code for core functionality. Similarly,
out of 61,602 PII accesses users could safely deny 17,665 (28.6%).
Thus, apart from augmenting the permission system by providing
rich contextual information, Reaper can further help users by pro-
viding concrete recommendations to accept or deny a considerable
number of “straightforward” permission requests. The information
provided by our system can also be used to expand access control
tools like XPrivacy, allowing for more fine-grained control of user
data, as it can selectively block invasive calls originating from third-
parties while allowing such calls required for core functionality;
we consider this part of our future work. For the remaining calls,
displaying the library’s type and the specific permission requested
can significantly improve the existing permission system and better
guide users into making informed decisions based on the app’s
intended functionality.

Permission mapping inconsistencies. While Reaper relies
on permission mappings provided by prior work, our system can be
used to dynamically validate those statically generated mappings.
Thus, while not part of our study’s main focus, we conduct an ex-
ploratory study as more accurate mappings will further improve the
main functionality of our system; we opt for API 22, since it is the
most recent version with the most accurate permission mappings.
We created a mock application that sequentially executes all the
permission-protected calls of the Android SDK, and verified the
permission of each function call based on the permission check
occurring in the Android Server. The divideMessage() function
exists in two different classes, and PScout and AXPLORER report
different permissions for this function. Using Reaper we found that
this function does not need a permission. To further verify this re-
sult, we triggered this function without declaring any permission in
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Figure 13: Coarse-grained (left) and Fine-grained (right) classification of PPCs and PII accesses initiated by libraries.

the app’s manifest file and observed the same functionality without
any warnings, errors, or crashes. We also manually investigated cer-
tain functions that were not mentioned in either study, and found
that prior work missed sendStickyBroadcast(), which requires
the BROADCAST_STICKY permission.

Interestingly, we find that functions being permission-protected
also depends on the arguments provided. For example, the function
getprovider() from the LocationManager class is permission-
protected when provided with GPS_PROVIDER but does not need
a permission for KEY_LOCATION_CHANGED. We argue that there is
dire need for better documentation of the internals of Android
permissions, as such scenarios can further confuse developers.

7 DISCUSSION AND LIMITATIONS
Defining origin. Reaper distinguishes core from third-party func-
tionality based on the origin of the executed code. We compiled a
list of libraries using data from [8, 28] for identifying their origin.
If a library is not in the list, the corresponding stacktrace will not
be flagged as third party functionality. Similarly, our library classi-
fication relies on external resources [8, 13]. As lists of libraries are
extended and become more complete, Reaper’s coverage will also
increase. Moreover, core functionality could potentially be misclas-
sified if a function has the same name with that of a known library.
We investigated our dataset and did not find such instances.

Call mappings. Reaper maintains a permissions-to-function-
calls mapping that contains the functions that should be monitored.
While we have used Reaper to validate these mappings, expanding
the mappings reported by prior work is out of our scope; thus, our
system will not monitor PPCs missing from that list.

Native code. Android apps are written in Java or in native code.
Xposed is able to hook functions written in Java, as well as native
code in cases of JNI. However, we cannot hook custom native code
written by developers since it is not supported by Xposed.

Kernel permissions. Certain Android permissions are regu-
lated by the kernel. Since Pscout and AXPLORER did not conduct
a native code analysis and have not created mappings for such
permissions, we have not included these permissions in our study.

Graph coverage.UIHarvestermaymiss displayed contentwhen
apps use wrappers or webviews, as will UI Automator.

Emulators. Since apps or libraries can identify that they are be-
ing executed in a virtual environment [58], our results may present
a lower bound of the privacy risks posed by libraries.

Obfuscated package names.While PPCs that originate from
obfuscated package names only account for 1.14% in our study,
Reaper could incorporate a static analysis tool like LibScout to
reverse the obfuscated package name back to its original form.

8 RELATEDWORK
A plethora of prior work has explored the Android operating system
in depth. While previous studies have not explored the origin of
PPCs and PII accesses and how it can be leveraged to augment the
permission systems, they have explored complimentary directions
including data leakage and the dynamic analysis of apps. Due to
space constraints we only present the most relevant prior work,
and discuss how Reaper improves upon, or compliments, that work.

Leak detection and prevention. Meng et al. [54], studied the
privacy concerns that arise from in-app advertising, and found that
ad publishers can identify user demographic information. Son et
al. [67] studied the isolation of different Ad SDKs, and showed that
the same-origin policy is not sufficient for protecting users’ privacy.
Ad libraries also have the potential for increased data collection
through side-channels [38] . Papadopoulos et al. [56] analyzed what
leaks occur while accessing the same service through themobile app
and a mobile browser, and showed that accessing a service through
the app leaks more device-specific information. Agrigento [36] is a
black-box differential analysis tool capable of identifying leaks even
in the presence of obfuscation offering significant improvement
over prior work. However, their approach cannot handle apps that
use custom encryption or custom or native code for certificate
checking. On the contrary, Reaper can detect when an app attempts
to access such data, and could be used in conjunction with their
system. Moreover, their differential analysis could be improved by
incorporating UIHarvester for exercising apps.

FLEXDROID [65] is an extension to Android’s permission system
that provides dynamic, fine-grained access control for third-party
libraries, and allows developers to separate permissions needed
by host apps from those required by the libraries. FLEXDROID
identifies the principal of the currently running code using stack
inspection and, depending on the identified principal, allows or
denies the request by dynamically adjusting the app’s permissions
according to the pre-specified permissions in the app’s manifest.
However, this approach presents several drawbacks compared to
Reaper. The heavy instrumentation of the OS and apps presents a
significant obstacle to adoption. Moreover, they require developers
to incorporate specific code in the manifest to protect users, but do



not provide developers with incentives to do so. On the other hand,
Reaper gives control to the users.

A similar work [34] extended the AppOps manager to provide
users with contextual information about the origin of permission
requests. Since they do not provide enough technical details we can
not compare to their approach. Moreover their library classification
is done manually while Reaper does it automatically.

TaintDroid [40] and FLOWDROID [25] used dynamic and static
taint analysis respectively, for detecting data leaks. PmDroid [43]
uses TaintDroid to track and block sensitive data obtained through
certain PPCs from being sent to ad networks, but obtains incomplete
taint tracking coverage and relies on volatile domain information
for identifying ad networks. VetDroid [83] extends the taint track-
ing logic of TaintDroid to monitor callbacks but suffers from the
same coverage limitations. TAINTART [73] presented an informa-
tion flow tracking system integrated inside ART that can be used
for detecting data leakage. ARTist [30] is a compiler-based app
instrumentation framework that can be used for intra-app taint
tracking, as well as dynamic permission enforcement. ArtDroid [37]
is a dynamic analysis framework for hooking virtual-method calls
supporting both Java and JNI methods. Liu et al. [51] proposed
PEDAL, a system that can identify libraries even when the source
code is obfuscated. AdDroid [57], Aframe [82], AdSplit [66] and
NativeGuard [72] proposed various techniques for separating in-
tegrated libraries from the host app. Recon [63] is a VPN-based
solution that monitors network traffic to detect and blocks PII exfil-
tration. MockDroid [31] modified the Android OS so as to replace
sensitive information with fake values. Fu et al. [42] proposed a
permission policy manager that monitors each library’s method
invocation and tracks the execution thread tree. XPrivacy [10] is
designed to prevent PII-access but does not distinguish libraries or
core functionality; incorporating the origin information produced
by Reaper would allow for more fine-grained access control and
significantly improve the usability aspect of such tools.

Android PermissionAnalysis.Wijesekera et al. [80] conducted
a user study to understand how often apps require access to pro-
tected resources by instrumenting the Android platform. Wang et
al. [76] employed text analysis and machine learning to infer how
two specific permissions are used based on a manual labelling of
622 apps. They relied on the PScout mappings and reported an
accuracy of 85% and 94% for the two permissions. To overcome the
obstacle of obfuscated code, they recently incorporated a dynamic
analysis aspect and conducted a study on 830 apps [77]. While their
approach has similarities with Reaper it presents significant limita-
tions. They rely on a modified version of TaintDroid in Android 4.3
and only perform stack inspection at sink points (e.g., the network).
Since stack inspection at this layer does not provide much infor-
mation about the purpose of the permission due to multithreading,
they heavily modified Dalvik to also capture the stacktrace of the
parent thread. Their system also induces a slowdown of up to 47%
compared to stock Android, while relying on random fuzzy testing
which is inherently limited. Reaper has negligible overhead and
performs stack inspection at the access level; this allows us to suc-
cessfully monitor all PPCs for different Android versions, including
those based on the ART compiler. Overall, while their study focuses
on a different aspect of permissions, incorporating Reaper for their
dynamic analysis would allow them to efficiently conduct a large

scale study and achieve higher coverage without the drawbacks of
their extensive OS modification.

9 CONCLUSION
Given the ubiquitous presence of smartphones and the massive
amount of sensitive information they store, it is imperative to strin-
gently mediate access to user data. Currently, the proliferation
and prevalence of third-party libraries renders them a significant
privacy risk. To address this issue we developed Reaper, a novel dy-
namic analysis system that traces the origin of permission-protected
calls and non-protected calls that access PII. Our subsequent study
on over 5K of the most popular apps, revealed the extent of li-
braries accessing sensitive data and found that certain permission-
protected calls were used exclusively by these libraries and not by
the apps’ core functionality. Reaper’s functionality can enhance An-
droid’s fine-grained run time permission system and enable users
to prevent third parties from accessing their personal data.
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