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Abstract—Many modern defenses rely on address space lay-
out randomization (ASLR) to efficiently hide security-sensitive
metadata in the address space. Absent implementation flaws, an
attacker can only bypass such defenses by repeatedly probing the
address space for mapped (security-sensitive) regions, incurring
a noisy application crash on any wrong guess. Recent work shows
that modern applications contain idioms that allow the construc-
tion of crash-resistant code primitives, allowing an attacker to
efficiently probe the address space without causing any visible
crash.

In this paper, we classify different crash-resistant primitives
and show that this problem is much more prominent than
previously assumed. More specifically, we show that rather
than relying on labor-intensive source code inspection to find
a few “hidden” application-specific primitives, an attacker can
find such primitives semi-automatically, on many classes of real-
world programs, at the binary level. To support our claims,
we develop methods to locate such primitives in real-world
binaries. We successfully identified 29 new potential primitives
and constructed proof-of-concept exploits for four of them.

I. INTRODUCTION

While arguably a weak defense by itself [42], address space
layout randomization (ASLR) plays a pivotal role in almost all
modern defenses that hide sensitive information at a random
location in memory. ASLR can be categorized as a basic form
of information hiding, namely randomizing the location of
code images, heaps and stacks in the address space. However
advanced defenses increasingly rely on the information hiding
primitives provided by ASLR to (pseudo-)protect sensitive data
such as encryption keys [31], code pointers [17], [28], and
redirection tables [9]. If implemented properly, even attackers
with full read-write access over the process’ memory will not
be able to access the sensitive data, because they are tucked
away at random memory locations in a huge address space.
Since the process memory will not contain a single pointer
to the hidden region(s), the only way for an adversary to get
to the secrets is by trial-and-error. It is almost certain that
such attempts will quickly access unmapped memory, which
normally incurs a crash. Hence, the sensitive information is
believed to be safe from attackers [31].

State-of-the-art attacks on information hiding try to reduce
the entropy of the randomization as much as possible. For
instance, they trick the program into increasing the size of
the hidden region [24], or into performing gigantic memory
allocations [35], or into leaking information via sophisticated

timing side channels [21]. However, unless the attackers
reduce the entropy to zero, the final step in these attacks
on randomization still relies on trial and error, with a high
likelihood of crashes.

Today’s successful attacks against the residual entropy build
on the observation that various server applications automatically
restart upon a crash, enabling an attacker to repeatedly probe the
address space in a brute-force manner [13]. Hence, recent work
proposed a variety of improvements to mitigate the attacks [30].
In this paper, we assume that information hiding is perfect, all
of the proposed improvements against disclosure attacks are
in place, the attacker cannot completely drop all entropy, and
the only way to find sensitive information is by performing a
crashless brute-force attack. As a result, an attacker needs to
find novel crashless ways to bypass such sophisticated defenses.

If the target application has code fragments that do not crash
when reading from or writing to inaccessible memory (because
they handle such violations themselves, say, in an exception
handler), attackers may use these fragments to probe for the
secret information repeatedly. This technique was introduced
by Gawlik et al. [22]. We define crash-resistant code as code
that will not crash the program upon an invalid memory access.
It is markedly different from crash-tolerant code where a server
application immediately re-forks worker processes or a web
browser re-opens a tab after a crash happened. While crash
tolerance can serve as a vector for attacks, it is much noisier
and thus less attractive than crash resistance—thousands of
crashes in a short amount of time may easily raise alarms in
real-world scenarios. In contrast, crash resistance incurs no
crashes at all and is therefore much stealthier.

Note that crash resistance in its intended form is a classic
double-edged sword. On the one hand, it enhances software
reliability and enables applications to automatically recover
from malformed inputs that cause an access violation, also
improving user experience. On the other hand, it permits attack-
ers to abuse the crash-resistant code snippets, dubbed memory
oracles, to probe the address space [22] and even entropy-
reducing attacks have used such crash-resistant probes [24].
Note that the underlying principles of each memory oracle
can vary greatly. They can range from system level exception
handlers, over system calls to application specific exception
handling.

Unfortunately for attackers, finding crash-resistant primitives



in real-world software is labor-intensive, manual work. Given
a new application, finding such a specific primitive is difficult
and rare, especially in the absence of source code. Thus, in its
original form, the approach was difficult to use in a generic
way across many applications. Furthermore, the concept was
thought to be only applicable to client applications.

In this paper, we present semi-automated methods to locate
crash-resistant primitives in a given binary executable and gen-
eralize the basic concept of crash resistance by demonstrating
that the method is also applicable to server applications. Based
on our observation of the root cause for the crash-resistant
primitives, we developed two different strategies on how to
locate further instances of them in binary executables. Both
serve as a starting point for fully automated identification of
such primitives and we demonstrate that our methods can
find them quickly in a number of real-world server and client
applications on different platforms. While our techniques do
not produce fully-fledged memory oracles in an automated
way, we substantially reduce the engineering work required to
analyze a given binary executable. More specifically, we are
able to identify in an automated way code constructs that can
serve as crash-resistant primitives.

The first approach targets the interface between a user-
mode program and the kernel, such as system calls on Linux
or API calls on Windows. This builds on the intuition that
many such calls allow the kernel to respond to an invalid
user address given as a parameter by returning an error code
(without crashing) to user space. We leverage taint analysis
to track which bytes in attacker-controlled memory eventually
determine the appropriate parameters in calls that fit crash
resistance (e.g., system calls that return -EFAULT on access
faults). Intuitively, by modifying these memory locations, the
attacker may probe the address space—assuming that the
program does not also dereference the address outside the crash-
resistant code fragment. We explore this idea for both server
applications on Linux and client applications on Windows to
study if this approach is feasible in practice.

The second approach targets exception handling code, since
this is a common technique to guard program code and respond
to error conditions—hence a prime candidate for crash-resistant
code. We look for code structures that paper over access
violations, thus yielding candidates for crash-resistant code
which we subsequently vet. In a first step, we extract the
exception handlers from a binary and then use symbolic
execution to determine which ones handle access violations.
Given that exception handling is commonly used for client
applications on Windows [22], we focus our analysis on such
programs.

Using these two methods we successfully found 29 new
crash-resistant primitives in popular server applications and
web browsers. We also developed four primitives found in
Nginx 1.9, Lighttpd 1.4, Internet Explorer 11 and Firefox 46
into proof-of-concept exploits to demonstrate the effectiveness
of our approach.
In summary, we make the following four contributions:

• We classify known crash-resistant primitives based on

their underlying mechanisms and use these properties as
a way to identify additional instances of memory oracles.

• We show that it is possible to discover (otherwise
extremely hard-to-find) crash-resistant code primitives
in an automated fashion in both client applications on
Windows and servers on Linux.

• We are the first to find and use crash-resistant code
primitives on server applications. In contrast to crash-
tolerant approaches, which simply exploit the fact that
server applications typically restart upon a crash, our
technique offers much more flexibility and stealthiness
for an adversary.

• We evaluated our techniques on five popular servers and
two browser applications and found 29 new crash-resistant
primitives, of which we developed four into fully fledged
proof-of-concepts. In addition, we discuss how attackers
can exploit these primitives to bypass any defense utilizing
information hiding.

II. BACKGROUND AND RELATED WORK

In the following, we provide a brief overview of the technical
concepts we use in the rest of this paper to classify crash-
resistant primitives and detect them in an automated way.

A. Crash-resistant Primitives

Several papers [13], [21], [41] have shown that server
applications are vulnerable to guessing attacks against defenses
based on randomization due to their crash-tolerant nature, i.e.,
a network service typically restarts in an automated way upon
a crash. This enables an attacker to perform brute-force attacks
and eventually reach her goal. On the downside, the induced
crashes are noisy and a defender might easily notice a server
application crashing thousands of times in a small amount of
time. Such attacks relying on crash-tolerant code were believed
to not affect client applications given their hard crash policy:
client programs usually do not restart after a crash and thus an
attacker is limited to a single try to bypass a given defense.

A new twist on crashes was proposed by Gawlik et al. [22],
who demonstrated that so called memory oracles can be
leveraged to probe arbitrary memory regions and discover
reference-less memory. The authors showed two examples of
such primitives: one usable in Internet Explorer which abuses a
system feature, and one in the 64bit version of Firefox which is
based on a program specific performance optimization involving
exception handlers. Furthermore the authors noted that some
system calls, like access, might be usable as memory oracles.
In this paper we build on these findings to define categories
of memory oracles and develop tools that aid in the search for
similar primitives.

B. Information Hiding Defenses

Software-based fault isolation (SFI [20], [45]) is a technique
that allows code to be executed with strong safety and
security guarantees by adding checks to critical operations
such as memory accesses or control flow transfers. Similarly,
techniques like SoftBound [34] or baggy bounds checking [7]
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enable memory safety, preventing many attack vectors in a
generic way. Unfortunately, the overhead induced by such
approaches is prohibitively high in practice [43], which prevents
a widespread adoption. As a more efficient alternative, several
recent defenses [9], [17], [28], [31] rely on information hiding
to prohibit an attacker from obtaining valuable information
such as encryption keys, code pointers, and redirection tables.

However, any defense based on information hiding is at risk
in the presence of crash resistance. Most prominently, address
space layout randomization (ASLR) can be bypassed as it
is possible to either locate the memory location of a library
directly or instead locate otherwise reference-less structures
that contain pointers to loaded binary images. For example,
on Windows this is the case for thread information blocks
(TEBs) and process environments blocks (PEBs), two data
structures which allow an attacker to retrieve the location
of all loaded modules. In practice, however, information
leaks providing the location of code images are common. In
contrast, inferring addresses of data structures belonging to
stronger defenses beyond ASLR is not commonly possible.
Such advanced defenses typically assume an attacker equipped
with an information leak—and thus full knowledge of the
memory layout of the process—with the exception of the
meta data structures of the defense in question. Commonly,
this is implemented by only keeping the addresses to these
structures in a register and preventing any write of this value to
memory. Without knowledge of the exact location, an attacker
can thus not overwrite the data and the defense can enforce
certain properties on the protected program. Examples of such
advanced defenses are Code-Pointer Integrity (CPI) [28] and
any Control Flow Integrity (CFI) solution relying on a shadow
stack [14], [17] to protect backwards edges. Armed with crash
resistance, an attacker can locate the hidden region of CPI (both
the sparse region and the hash-table based implementation [22])
and modify the metadata of any pointer. This means that the
main assumption of CPI, namely that the pointer metadata
of any code pointer cannot be modified by an attacker and
thus any use of crafted pointers is prevented, no longer holds
true. A similar attack is possible for shadow stack-based CFI
solutions. These solutions hide the location of the shadow stack
from the attacker by using, for example, a dedicated register
or thread local storage. If an attacker can find the stack via
crash-resistant probing, she can modify the information stored
there.

The same holds true for implementations that instead of using
a dedicated shadow stack rely on separating safe and unsafe
stacks. The SafeStack [28] implementation by CPI, which is
now included in LLVM, provides such a feature and uses the
native stack only for statically proven safe variables. This means
an attacker cannot overflow a local stack variable to overwrite
return addresses. Additionally, the compiler ensures that no
references to the SafeStack are written to memory outside
of the SafeStack itself, resulting in a reference-less memory
region. As return addresses are located on the SafeStack, a
control-flow hijack based on overwriting return addresses is no
longer applicable, without being able to pivot the stack pointer.

However, as crash resistance allows scanning the whole address
space, the stack can be located [24] and the return addresses
overwritten.

Another recent defense that aims to protect against mean-
ingful control flow hijacks is ASLR-Guard [31]. The main
concept is that an attacker is rendered unable to retrieve a
plain text code pointer, so any control flow hijack attack is
reduced to pure chance. This is achieved by (i) removing links
between data pointers and code pointers and (ii) encoding any
code pointers stored to data memory. The first countermeasure
ensures that a data pointer leak (which is explicitly allowed
within the threat model) gives no indication of the location of
executable code. With the common form of ASLR the address
of the data section, which can be located by the attacker, allows
inferring the location of executable code of the same module
by simply adding a static offset. The first countermeasure is
combined with a pointer protection scheme that never writes
plain text code pointers to data locations. This includes most
prominently the stack, which can be located and leaked by
an adversary. However, using a crash-resistant primitive, it is
possible to just probe memory until the executable code is
found. An attacker does not need to infer the location from
either data pointers or saved code pointers: after the executable
code has been located, known attacks like JIT-ROP [42] can
be used again.

Apart from models that merely restrict an attacker’s knowl-
edge of the memory layout, some defenses impose additional
properties on the memory. The principle of execute-only
memory (XoM) [8], [23] allows for an additional access right,
in contrast to the standard of execute access implying read
access. Without the possibility of reading the code, an adversary
has no way of determining the actual bytes used to implement
a given functionality. If this technique is combined with some
form of fine-grained ASLR, it prevents code-reuse attacks
requiring knowledge about the exact code either statically,
e.g. ROP [38], or at run time, e.g. JIT-ROP. Against these
defenses, memory oracles are less useful as probing primitives
are mainly utilized to locate memory, whereas XoM does not
use any information hiding in this regard. As such, when using
plain probing attempts, the result of trying to read code would
still indicate inaccessible or unmapped memory. However,
with crash-resistant primitives that allow broad capture of
any exception, it could be possible to brute-force the code
layout. A similar attack might be possible against sophisticated
defense solutions such as Readactor [15] and Readactor++ [16],
which focus on both hiding code pointers from an attacker and
enforcing XoM.

An important type of defense that can hamper the success
of memory probing is runtime re-randomization [9], [12].
Employing runtime re-randomization can substantially decrease
the success probability of either the scanning itself or the
following attack step. Due to the “moving target”, it is harder
for an attacker to locate the code she needs and at the same
time abuse it within the time constraints given by the defense.
However, crash-resistant primitives that allow invalid executions
to be recovered can also weaken the security guarantees of
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these defenses: given enough tries, such schemes can likely be
bypassed due to the chance of using the right randomization
in the attack attempt.

C. Threat Model

In the following section, we introduce several techniques to
detect crash-resistant code within a given binary executable.
Several conditions must hold for these code snippets to be
useful for an attacker. To this end, we assume the following
threat model in the rest of this paper, which is realistic and
matches the capabilities of a real-world attacker. Further, it
is consistent with recent research [15], [16], [18], [33], [40],
[42]:

• Arbitrary read/write primitive: The attacker can read
from and write to arbitrary memory locations.

• Information leak: An information leak allows the adver-
sary to infer the location of data protected via some kind
of randomization scheme such as ASLR. For example, the
adversary can locate the base address of module locations,
but she cannot access reference-less memory locations.

• Computational capabilities: The attacker can perform
computations during the attack. This can be some form
of scripting environment on the client side or a server ac-
cepting multiple connections. The latter allows an attacker
to query the state of the server with one connection and
act on this information with another one.

• Writable ⊕ Executable memory: Memory pages are
marked as either executable or writable, but not both at
the same time.

• State-of-the-art defenses: The target application employs
some kind of state-of-the-art defense to thwart code-reuse
attacks. This can be either an information hiding scheme
such as a shadow stack-based CFI approach, or some kind
of defense to prevent control-flow hijacking attacks such
as CPI.

• Hard crash policy: The application does not automat-
ically restart after a crash. This includes automatically
restarting a crashed worker process or a user opening a
website again.

III. HIGH-LEVEL OVERVIEW

In code-reuse attacks, the exploitation procedure of memory
corruption vulnerabilities can be subdivided into three phases.
Initially, the attacker leverages a memory corruption vulner-
ability to establish a read/write primitive. Depending on the
kind of vulnerability, an attacker may be able to read some
out-of-bounds bytes in order to disclose some information
about the address space layout, or leverage some other kind of
information leak. In the second phase, the attacker prepares the
payload, for instance, by relocating a static ROP chain [38], the
counterfeit objects of the COOP attack [40], or by compiling
a JIT-ROP chain [42]. Meanwhile, it may be necessary for
the attacker to also bypass code-reuse defenses such as fine-
grained randomization [11], [26], [46], shadow stack-based CFI
solutions [14], [17], CPI [28], and other information hiding-
based approaches [9], [18], [31]. Finally, the attacker hijacks

the control flow by overwriting code pointers or other sensitive
pointers. In practice, it may be necessary to carry out (parts of)
the sequence multiple times in order to bypass multi-process
sandboxing schemes or to escalate the privileges of the user.

We assume that a defense relying on information hiding, for
example one of those discussed in Section II-B, is employed
by the target application. Thus an attacker needs to leverage a
crash-resistant primitive in the second attack phase with the
help of the following steps (Figure 1):

1) Overwrite a value in memory: the attacker uses a memory
corruption primitive to prepare the memory for the next
step, usually overwriting pointers to data which are then
probed later; modifying data can cause usually benign
functions to exhibit unintended/malicious behavior.

2) Trigger execution of probing: the attacker forces the
program to execute the probing primitive. This is trivial via
a control-flow hijacking attack, but we focus on locating
primitives legitimately accessible to the attacker, e.g.,
functions in a scripting environment.

3) Infer the state of the probed location: finally, the attacker
requires an indication whether or not the probing attempt
succeeded. In the easiest case, this is directly inferred
from a return value or similar information, but usually
the attacker needs to infer the state indirectly, e.g., via
memory changes or execution timings.

These steps can be repeated several times to probe other
memory locations until enough information about the memory
layout is known to the attacker.

In the remainder of this section, we describe our classifica-
tion of crash-resistant primitives and outline how we locate
additional candidates in a (semi-)automated way for each type.
Note that we do not cover functionality intended for querying
the memory layout of a process, such as the /proc file system
under Linux or functions like VirtualQuery or IsBadReadPtr
on Windows.

A. Syscalls and OS API Functions

Modern operating systems allow for the quasi-parallel
execution of different, isolated user space processes. This also
means that a fault in a single program must not cause another
independent program or the whole system to fail. This is
achieved by handling errors, e.g., invalid memory accesses, on
a per-program basis. However, once a program needs to pass
data to the operating system, any error in this data (or often in
the case of a memory error, in the location of this data) can

step 1: 
change pointer in memory

A

recv (fd, A, ...)
step 2: 

make program use the pointer
in crash tolerant function

step 3: 
check for success of
the probe operation

(returns EFAULT if address not valid)

Figure 1: Attacker’s procedure to probe memory without crashing
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potentially impede the stability of the whole system. As such,
whenever data is passed from user space to kernel space, the
OS must perform strict error checking.

To allow an application to react to an error in its data,
a failure state is usually returned. If this event is properly
handled, the application can resume execution. However, in
the case of a scanning attempt, this property can leak valuable
information to the attacker. If she is able to influence the data
in a way that causes a failure state to be reported for invalid
addresses and success for valid ones, she is able to probe the
address space and uncover hidden memory regions. The actual
implementation of such a primitive is heavily OS dependent,
however it is applicable to any program allowing manipulation
of input data and inferring the error state afterwards.

On Windows systems, the OS exposes a set of system
API functions which are then translated to system calls
after preprocessing in user space. The result is an often
heavily abstracted interface to the underlying syscalls. This is
problematic in the context of memory probing, because any
access to the supplied memory region can lead to a fault in
user space, preventing the OS from gracefully reporting the
error state to the program. In contrast to this, programs running
on Linux are free to access syscalls directly or with minimal
abstraction. While both system operate on a similar principle—
a specified interface is provided for the user programs—we had
to account for the differences and chose to develop different
techniques for the Windows system API and Linux syscalls.

1) Linux syscall interface: The Linux kernel exposes a set
of well documented syscalls to the user space. These are used
to perform kernel-level functionalities from user space, such as
file- or network-related operations, and memory management.
In case an error occurs during a syscall, the kernel returns -1
to the user process to indicate that something went wrong and
assigns the appropriate error code to the errno variable in user
space.

Several syscalls require the application to provide pointers to
memory in user space such that the kernel can read data from or
write data to that area. In case the address is invalid, the kernel
sets the errno variable to EFAULT [5], which indicates that
the memory location is not accessible. EFAULT is a common
error code that many popular system calls use. Examples
include connect, read, write, epoll_wait, recvfrom, open,
and many others. If an attacker has control over the memory
address of the relevant syscall parameter, she can potentially
probe the address space for accessible memory areas without
crashing the application.

For instance, many servers contain a main loop like this:

1 while (true) { // server loop
2 ...
3 if (read (fd, buf , MAX_BUF_LEN) < 0) {
4 terminate_connection(fd, "read failed");
5 continue;
6 }
7 ...
8 }

Listing 1: Server loop with error handling

An attacker who is able to control the buf pointer can provide
any address and discover whether or not it is valid. Note that
the server will not crash.

The detection of crash-resistant candidates can be automated
as follows. Because of their relevance for crash-resistant
probing candidates, we maintain a list of all syscalls that
may return EFAULT and monitor their occurrence during an
instrumented, automated execution. We use taint analysis to
identify which parameters can be influenced by an attacker
and execute unit tests to analyze which syscalls can potentially
be executed during a run of the application. As a result, we
obtain a list of potential candidates.

2) Windows API: In contrast to Linux, user-mode
applications on Windows exclusively utilize the API
provided by the operating system [39]. As a result, Windows
never exposes the system calls directly to the application.
Nevertheless, the same method outlined above can be applied:
if an API function accepts a pointer as an argument and an
attacker can control this pointer, she can point it to arbitrary
memory addresses and observe the return value or side effects
to infer the resulting state. An example for this concept is the
API function VirtualQuery, it is used to obtain information
on the state of a memory address. If an attacker is able to
control the argument ptr and knows the location of mem info,
she can probe any page for its state and permissions:
1 void* ptr = NULL;
2 PMEMORY_BASIC_INFORMATION mem_info = malloc(sizeof(

MEMORY_BASIC_INFORMATION));
3 ...
4 VirtualQuery(ptr , mem_info , sizeof(

MEMORY_BASIC_INFORMATION));
5 ...

Listing 2: Example for VirtualQuery API call on Windows

While VirtualQuery is trivially able to serve as a memory
oracle, the functions targeted by our framework do not
explicitly state their crash-resistant nature in the documentation.
Therefore we need to locate them ourselves using the following
steps. First, we reduce the set of all available Windows API
functions to only those functions with crash-resistant properties.
For this we apply a basic form of fuzzing to the Windows
API functions. In the second step, we attempt to find code
paths to these crash-resistant API functions by harvesting API
calls, tracing instructions, and filtering the results via custom
analysis scripts. Third, we classify the pointer arguments of the
crash-resistant API functions to figure out if we can actually
control the pointer on the execution path: only if an attacker-
controllable pointer is found, we can construct a corresponding
crash-resistant primitive.

B. Exception Handlers

Another feature of common operating systems and pro-
gramming languages is allowing a program to recover from
an exception. These exceptions can range from a software
generated exception to hardware faults. For our purposes, the
possibility of handling an invalid memory access and resuming
execution afterwards is especially critical. Low-level languages
like C/C++ allow a programmer to explicitly add constructs
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to catch faults and tell the operating system how to resolve
them. Essentially the operating system or language runtime
provides information about the fault to a specific subroutine
in the program which then can choose from a set of options.

Commonly these options include simply ignoring the ex-
ception, executing the next instruction as if nothing happened,
resuming execution at a different location instead, or passing
the exception along to another handler. In the latter case, if
the exception is not handled by the program, the OS will
usually terminate the program. A crash-resistant primitive using
exception handling requires the program to dereference an
attacker controlled pointer inside a code block that is covered
by an exception handler. After a probing attempt, the result
must be visible to the attacker, either explicitly by a return value
or similar values, or implicitly with the help of side channels
(e.g., timing). In addition, the exception handler must allow
memory faults to be handled, which can be excluded using the
information provided for each fault to filter out unsupported
exceptions.

Under Linux, exception handling is implemented as signal
handling. A signal is a software interrupt that can be handled
by a process in three ways: (i) it can be ignored, (ii) it can be
caught by a signal handler, or (iii) the signal’s default action
can be performed [6]. For example, the default action of the
signal SIGSEGV (i.e., segmentation fault or access violation) is
the termination of the process.

In contrast, Windows utilizes two techniques for exception
handling, Structured Exception Handling (SEH) [36], [39]
and its extension Vectored Exception Handling (VEH) [37].
While SEH-based exception handlers operate locally on a
guarded function, VEH-based exception handlers can be
used globally within the process. The following example
shows a SEH-guarded block with its corresponding fil-
ter:
1 __try {
2 ...
3 // guarded code
4 value = *ptr;
5 ...
6 }
7 __except(EXCEPTION_EXECUTE_HANDLER)
8 {
9 value = -1;

10 }

Listing 3: Example for Structured Exception Handling (SEH) with
corresponding filter on Windows

This exception handler could be used to probe memory
addresses, if an attacker controls the value of ptr. In the case of
any exception, including access violations, value would be set
to -1; if the location is readable, it would be set to the content
of that address. Specifying EXCEPTION EXECUTE HANDLER as
the filter expression allows the handler to be executed for all
types of exceptions.

Any exception leads to the evaluation of the corresponding
filter expression which determines the appropriate action. The
filter can (i) simply resume the program execution (i.e., ignore
the exception completely), (ii) transfer the control flow to
the exception handler, or (iii) forward the exception to the

next handler. The filters are implemented as separate functions
on the binary level and referenced in SEH structures. If an
exception is not handled and it is considered fatal by the
operating system, it causes program termination. This is also
the case for access violations generated by scanning attempts.
If an attacker can control dereferences inside of a guarded
code block and the corresponding filter allows either handling
or ignoring of access violations, she is able to scan arbitrary
memory.

To automatically locate potential memory oracles, we first
need to collect all available exception handlers and their
guarded code regions. This is done via static analysis of the
target binary. We then discard any exception handlers which
are not able to handle access violations as indicated by their
filters. For this we symbolically execute the filter functions.
The resulting set of potential code locations is then analyzed
with the tools described in the previous section: instead of
system APIs, we now target the guarded code locations.

C. Swallowed exceptions

On further investigation we also added a third class of
possible memory oracles which was not covered before. There
are circumstances where exceptions are silently ignored. Here
we do not consider cases where an exception handler of a
program simply ignores the fault and continues execution or
a system API detects an error and the user program does
not check the error status. While leading to the same result,
suppressing of memory faults, these methods deliver the error
status to the user program, it just does not act on them. Instead
swallowed exceptions give no feedback to the user program
that an exception occurred. An example are user-kernel-user
callbacks [10], where the exception handling mechanism can
not support the context switches. The result is that the calling
program has no way of detecting that an exception occurred.
We do not consider this class of crash-resistant primitives in
our analysis.

IV. IMPLEMENTATION

In the following, we briefly outline the implementation of
our framework and describe the reasons for our design choices.
Implementation details are available in the corresponding
technical report [27].

A. Syscalls on Linux

On Linux, we use dynamic taint tracking to isolate viable
candidates. We target common server applications with test
cases, allowing for sufficient code coverage. As we reuse test
cases and want to support additional applications with minor
changes, we chose a minimally invasive approach. The server
program is instrumented with libdft [25]—a data flow tracking
library which we extended with byte granular taint tracking—
and the corresponding client program is controlled by our
monitor application. The monitor can send client and server
custom commands to control the taint state and invalidate
pointer arguments. After a test run we obtain a list of potential
crash-resistant primitives with details on which arguments were
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valid or invalid during the test run. This list is then verified
manually to eliminate false positives.

B. Windows API Functions

As the Windows API does not define error states as uniformly
as the Linux syscall interface, we need to isolate appropriate
target functions ourselves. For this we use a fuzzing approach to
gather a list of functions that handle invalid pointer arguments
gracefully. Afterwards we locate any usage of these functions
in the targeted applications. For this we use the dynamic
instrumentation framework DynamoRIO [19]. The resulting
list of call sites is then reduced using heuristics to only retain
promising candidates. At the end of this analysis phase, the
results need to be manually verified to exclude any false
positives, mainly those cases in which the pointer arguments
are either short lived stack variables or volatile heap locations,
and thus cannot be controlled by the attacker.

C. Exception Handlers

Aside from the system level candidates, we also target
application-specific memory oracles in the form of exception
handlers. For this we use the fact that under 64bit Windows
every function in an application needs to provide stack unrolling
information in case it is contained in the call stack of an
exception. As such, we can parse the corresponding .pdata
section and retrieve the list of all exception handlers in an
executable module. We then use symbolic execution and the
SMT solver Z3 [32] to filter out the exception filters that allow
either all exceptions or at least access violations to be handled.
After this analysis step, we reuse the analysis methods we
developed for the tracking of API functions and target the
code covered in the exception handlers. At the end, we again
manually verify the results.

V. EVALUATION RESULTS

Based on our prototype implementation, we now discuss the
results of our analysis on binary executables for both Linux
and Windows.

A. Syscalls on Linux

We evaluated our framework with widely used server
applications on Linux. In particular, using our framework, we
ran the standard test suites for the following server programs:
Nginx 1.9, Cherokee 1.2, Lighttpd 1.4, and Memcached 1.4.
We focus on such popular server programs since they all handle
multiple connections per process. An attacker can simply use
one connection to probe a memory address (using a discovered
crash-resistant primitive) and another connection to exercise
her arbitrary read/write primitives and modify the state of the
probing connection.

For completeness, we also consider server programs that
handle every new connection in an independent worker process,
focusing our analysis on PostgreSQL 9.0. In such cases, the
attacker can only use a single connection to probe and modify
the state of the program. While exploitation is generally
more complicated (it might be harder to restore the preferred

Table I: Syscalls indicated as potential (±) or valid (+) cr primitives
by our framework on Linux. Green circled ones were manually verified
to be usable as a cr primitive. The red non-circled plus sign indicates
a result manually verified to be a false positive.

Syscalls
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chmod ±
connect ±
epoll wait + ± + ±
mkdir ± ±
open ±
read ± ± + ±
recv + ±
recvfrom ±
send ±
sendmsg ±
statfs ±
symlink ±
unlink ± ±
write ± ± ±

connection state to probe a new memory address), we still found
usable primitives in practice. Note that our goal is simply for the
worker process not to crash and a graceful process termination
is sufficient for our purposes. As the worker process is expected
to terminate after serving a request, this does not constitute
any abnormal action.

Table I shows all the candidates reported by the framework.
As depicted by the non-circled plus-minus sign, many of the
candidates end up in a segmentation fault if we automatically
alter the target memory locations with an invalid memory
address. We have confirmed our framework has flagged all
these cases correctly using manual inspection. Despite the
many invalid candidates, our framework discovered a usable
crash-resistant primitive, depicted with a green circled plus
sign, in all of our server programs (with the two potential
candidates confirmed via manual verification).

Four candidates in total were indicated as valid candidates by
the framework. We confirmed that our framework has flagged
all these cases correctly using manual inspection, except the
valid candidate on Memcached which turned out to be a false
positive (depicted as a red non-circled plus sign). Manual
inspection revealed that the connection handling thread exits
after the candidate syscall epoll wait returns an error code,
while the server keeps running—which our framework currently
interprets as correct behavior. Subsequent connections, however,
never get processed by the now terminated connection handling
thread and the primitive is effectively unusable for multiple
probing attempts. This false positive can be simply eliminated
by checking the status of connection handling threads, a strategy
which our current prototype does not yet support in a generic
way. From our analysis, we found usable candidates in recv in
Nginx, epoll wait in Cherokee and PostgreSQL, and read in
Lighttpd and Memcached. We exemplify how such candidates
can be used as crash-resistant primitives in Section VI.
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B. Windows API Functions

We had to first collect crash-resistant API functions on
Windows. We extracted 20,672 API functions from the MSDN
library, of which 11,521 (55.7%) contained at least one pointer
argument. Hence, only these functions served as inputs for the
analysis phase via our custom API fuzzer. As a result, we found
400 API functions that are candidates for a crash-resistance
primitive both under Windows 7 and 10.

In the next step, we attempted to locate these functions
on execution paths, outlined here exemplary for Internet
Explorer 11 (64bit) on Windows 10. For this, we logged all
calls to target API functions while visiting the top 500 websites
from alexa.com [1]. In addition, we ran browser and JavaScript
benchmarks [2], [44] to increase the code coverage. Only 25
crash-resistant API functions were found on an execution path.
Finally, we used our analysis scripts to determine if these
functions were triggered from a JavaScript context. We found
12 functions with this characteristic.

To be a usable crash-resistant primitive, we have to trigger
them from JavaScript and control their arguments; in addition,
we must be able to intercept the return value. To analyze these
two properties, we created instruction traces and analyzed the
resulting execution paths. Unfortunately, all candidates had to
be excluded after a manual analysis since all of the pointer
arguments were unusable for our purposes. The reasons for
this are threefold. First, most functions were query functions
(e.g., GetPwrCapabilities) which are usually called by
supplying a stack-allocated structure. If such a pointer is invalid,
then the stack pointer is corrupted. This leads to an illegal
memory access and causes the program’s termination. Second,
a majority of the remaining candidates’ pointer arguments were
dereferenced outside of the target function. This also leads to
an illegal memory access if the pointer is invalid. Third, we
cannot control the pointer arguments of some candidates since
the pointers were volatile heap pointers which had no previous
references stored in memory.

This negative result for Windows API functions does not
imply that no crash-resistant primitive can be constructed using
our method. The coverage of test cases influences the number
of excluded functions after code path analysis: only 25 of the
400 candidate API functions were observed on execution paths.
Further work on improving code coverage may lead to more
candidates, and hence yield crash-resistant primitives.

C. Exception Handlers

To test the feasibility of our approach leveraging excep-
tion handlers, we collected the executed code blocks during
normal usage. Again we use Internet Explorer 11 (64bit) on
Windows 10 as an example. We instrumented the browser with
DynamoRIO and browsed again the top 500 websites from
alexa.com [1]. Then, we analyzed all DLLs that have been
loaded by the browser and extracted the exception handlers.
Afterwards, we reduced this set by symbolically executing
the corresponding filters and cross-referencing the remaining
exception handlers with those that have been visited.

Table II: The number of unique code locations that are guarded by
C-specific handlers during an Internet Explorer 11 run. The code
locations that appear on the execution path are from the set after
symbolic execution (SB).

DLL # guarded program code

before SB after SB execution path

user32 70 63 40
kernel32 76 66 14
mshtml 129 10 3
ieframe 34 22 6
kernelbase 96 81 0
ntdll 113 65 19
jscript9 22 6 4
rpcrt4 62 20 6
sechost 133 11 0
ws2 32 82 29 10
xmllite 10 2 1

Table III: Unique exception filters in different DLLs before and after
symbolic execution (SB).

DLL # filter functions

before SB after SB

x64 x32 x64 x32

user32 9 17 2 15
kernel32 60 7 50 3
mshtml 128 33 9 2
ieframe 29 6 17 0
kernelbase 54 21 39 19
ntdll 71 25 23 15
jscript9 19 5 3 4
rpcrt4 50 11 8 1
sechost 126 26 4 1
ws2 32 55 25 3 17
xmllite 10 0 2 0

Table II provides an overview of the amount of program
code that is guarded with C-specific exception handlers for a
subset of the loaded DLLs. In addition, the table shows the
code locations that are guarded with crash-resistant candidates
(including the exception handlers that use catch-all filters) as
well as their number of occurrences on the execution path.
For instance, there are 63 crash-resistant candidates from 70
exception handlers in user32.dll, whereby 40 code locations
that are guarded by those are executed while browsing the
most popular websites. Contrary, sechost.dll guards 133
code locations, whereby 11 crash-resistant candidates exist and
no guarded code location was triggered during our test. In
addition, Table III shows that symbolic execution significantly
reduces the set of exception filters, since it drops the majority
of filter functions given that they are not fit for our purposes.
As described before, we use symbolic execution to exclude all
filters that do not allow access violations to be handled. For
example, only 4 of 126 filter functions remain in sechost.dll,
while 9 of 129 are left in mshtml.dll. In total, we found
6,745 C-specific exception handlers in 187 analyzed DLLs.
These exception filters use 5,751 different filter functions. After
the symbolic execution, 808 filters remain that handle access
violations, including catch-all filters. These filter functions are
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used by 1,797 exception handlers.
In the next step, we cross-referenced the visited code blocks

with those filtered exceptions. These exception handlers may
lead to crash-resistant primitives that are known to be triggered.
In absolute numbers, these guarded code parts have been
triggered 736,512 times during our test, whereby 385 different
code parts have been visited. To sum up, this analysis step
reduced the target set from 6,745 to 385 C-specific handlers.
To further reduce the candidate set, we used our debugger
script to only select functions that are triggered via JavaScript.
For this we assumed that any function which has a reference
to part of the JavaScript engine in its call stack is valid. The
survivors after this step were then manually verified.

While we focused our code path analysis on Firefox and
Internet Explorer, the results of the previous analysis steps can
be reused for any application. This means the static analysis of
the system DLLs can be performed once and then be applied
to any target program.

VI. PROOF-OF-CONCEPT EXPLOITS

To demonstrate the practical applicability of our automati-
cally discovered crash-resistant primitives, we developed four
proof-of-concept exploits that we discuss next. Note that we
focussed on locating the memory oracle itself, so we assumed a
memory read/write primitive to be present. During our tests we
emulated such a vulnerability by modifying the target binary.

A. Internet Explorer 11

Our proof-of-concept exploit for Internet Explorer 11 relies
on the function MUTX::Enter contained in jscript9.dll. It
contains a call to EnterCriticalSection that is encapsulated
in a try-catch block. The exception filter address field within
the scope table contains 0x1, which indicates that regardless of
the exception code, all exceptions are caught and the execution
resumes at the exception handler. The CRITICAL SECTION
structure passed to EnterCriticalSection lies within the
ScriptEngine object at a fixed offset. The ScriptEngine
object also contains a status field that indicates whether
the last call to EnterCriticalSection failed. This status
field is cleared before the call and set in the exception
handler. The CRITICAL SECTION structure contains a pointer
to a debug info structure. Under certain circumstances,
EnterCriticalSection reads the field at offset 0x10 from
that debug info structure. By setting three additional fields
of the CRITICAL SECTION structure to certain values, we can
force the correct circumstances. An attacker can overwrite
the pointer to debug info with x− 0x10 to probe address x.
MUTX::Enter is called by Internet Explorer’s JavaScript engine
once it processes new JavaScript code and thus, can easily be
triggered by adding a new script tag to the DOM.

B. Firefox 46

As another example, we chose Firefox 46.0.1 64bit on
Windows 10. As the general approach for both proof-of-concept
exploits is similar, we only highlight the key differences. In
contrast to Internet Explorer, where the exception handler

was located in the application itself, namely jscript9.dll,
the memory oracle in Firefox is due to an exception handler
in ntdll.dll. While all applications import this library, the
corresponding primitive was only on the execution path when
using Firefox. Another difference is that the exception handler
is not flagged as catch-all, instead it excludes certain exception
types, but as it handles access violations it is usable for our
purposes. Due to the way the memory oracle is used within
the process, it does not require a manual trigger, instead a
background thread continuously calls the vulnerable function.
This means we only need to write the address to probe to the
appropriate object and read back the result after giving the
parallel thread a chance to probe.

C. Nginx 1.9

On Nginx, our framework found that the crash-resistant
primitive associated to the recv syscall becomes available
after the server receives a partial request. In detail, the server
allocates a Nginx-specific ngx buf t struct object for a
connection once some request data comes in (only deallocated
later, when request processing completes). In our proof-of-
concept exploit, we use parallel connections to implement
the individual memory probes. We first send a recognizable
signature via a partial request over an independent connection,
so that the server allocates the buffer and saves the signature
therein. While the first connection is waiting for the request
to complete, i.e. for a double newline marking the end of the
request, we use a second parallel connection to leak the buffer
object containing our signature. Once we leak it, we perform
arbitrary writes to the buffer to reinitialize it, i.e., set all its
pointers to the memory address we are probing for. Finally,
we send more data to complete a full request over the first
connection. If the memory address overwritten in the buffer
was inaccessible, the server gracefully closes the connection
without sending back any response data. Otherwise, the server
sends the requested file back to the client over the connection.

D. Cherokee 1.2

On Cherokee, our framework found a crash-resistant prim-
itive associated to the epoll wait syscall. Unlike Nginx,
Cherokee’s default configuration starts multiple threads to
serve parallel incoming requests. Each idle thread calls the
epoll wait syscall in a loop, with a timeout of 1 second
between iterations. Corrupting a given thread’s epoll object
pointer with an inaccessible memory address will cause the
thread to stop serving client requests and stall in a tight loop of
failing epoll wait invocations. This induces a performance
degradation attack on the Cherokee (lower capacity and higher
overhead), resulting in a timing side channel. In our proof-of-
concept exploit, we first leak the location of a given thread’s
cherokee fdpoll epoll t object and then corrupt it to
probe memory. For each probe, we overwrite the struct
epoll event pointer in the target object and measure the
time for the server to handle 1,000 requests. We noticed there
is significant time difference compared to the baseline when
even a single thread is non-functional. With all threads running
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correctly (baseline), the server handles all the requests in 5.7
seconds, and when a single thread is non-functional, it does
so in 9.3 seconds (on average, with marginal variations across
runs). Based on the time difference, we can distinguish whether
the probed memory address is accessible (former case) or not
(latter case).

VII. DISCUSSION

In the following, we discuss limitations of our current
prototype implementations and reflect on the lessons learned.
We also explain the reasons for our disjoint approaches for
locating memory oracles on different operating systems.

A. Locating Primitives of Previous Work

To verify our tool chain, we searched for the known memory
oracles in both Internet Explorer and Firefox [22]. The primitive
in IE is based on an exception handler that is set to handle
all possible exceptions. As our tool looks for this kind of
exception handler, we were able to locate this candidate in an
automated way. After a security update, the handler handles
a set of exception classes configured by a system setting. To
detect this new version of the primitive, we had to manually
verify it due to the filter calling another function to allow
configuring the behavior.

The primitive in Firefox, on the other hand, was not located
automatically because this application uses a vectored exception
handler (VEH) that is registered during runtime. As we do
not cover this class of handlers in our current prototype
implementation, our framework can not locate this candidate.
Note that this is not a fundamental limitation of our approach.
Further work can support this class by locating all calls to
AddVectoredExceptionHandler and extracting the handler
address. In addition, the semantics for the symbolic execution
need to be modified to account for the different function
prototype.

Oikonomopoulos et al. [35] recently introduced a technique
that allows an adversary to use allocations to narrow down the
location of reference-less memory. While not directly related to
crash-resistance, this method also provides a kind of memory
oracle, but it does not rely on any fault handling. However
it requires the availability of the kernel feature overcommit,
which is the ability to allocate more virtual memory than is
available as physical memory. We did not locate an allocation
oracle as it is completely different to the primitives we targeted.

B. Differences between results on Linux and Windows

On Linux we were able to directly target syscalls and their
crash-resistant nature. On Windows, certain system APIs also
provide a similar behavior, but as the Windows API often
contains more levels of abstraction, not all invalid arguments
are passed to the system calls and, instead, result in an exception
in the user-level code. However, we were still able to locate
such APIs on Windows.

Besides relying on system-level functionality, a user program
can also use exception handling to detect and resolve potential
memory errors. Our results show that filtering prior to handling

an exception can be effective in limiting the danger of a specific
exception handler. Even applications that heavily use exception
handling do not necessarily contain a memory oracle, if the
proper filtering is performed. However we also located multiple
examples of catch-all filters or filters with broad filtering criteria.
Some of these were combined with memory dereferences
outside of the protected code area, which usually indicates
a handler which should not cover access violations, but does
so anyway due to too broad filtering. Another observation
is that exception handling is much more common in client
applications on Windows than it is in servers for Linux. This
can be explained by the differences in the way memory faults
are reported on these systems. Linux uses the signal model,
requiring a global signal handler to catch the corresponding
signal [4], whereas Windows allows the usage of SEH, which
provides a comfortable way to protect specific code blocks.

C. Potential countermeasures

Depending on the system and application different coun-
termeasures are possible. We outline some possible defenses
ranging from a system redesign to ad-hoc fixes in either the
application or the system itself.

System design changes Completely eliminating memory
oracles would most likely require fundamental changes to
both programs and the underlying operating systems. Most
of these countermeasures intentionally reduce the feature set
provided to user space programs and therefore the balance
between loss of functionality and gain of security must be
considered. Given a mechanism to either recover from access
violations or querying the state of memory addresses (either
directly or indirectly), an attacker can construct crash-resistant
primitives and bypass information hiding defenses. As such,
we propose the following properties:

• any access violation is critical for the application and
yields to termination

• exception handling can only be used for program-level
exceptions (e.g., C++ exceptions), not system-level (e.g.,
access violations)

• error reporting and data collection is possible, but care
must be taken to not allow resuming the normal execution

• system APIs and system calls must terminate the offending
application on a memory error, as if the application
received the fault

• exception masking must not be possible, any fault no
matter the callstack terminates the process

• facilities to infer the memory layout, e.g., information in
/proc or VirtualQuery, are questionable and should be
removed to prevent probing using them

• allocation functions that allow specifying the desired
address should be removed

• the memory layout of restarting processes must not persist
between restarts

Improving exception filtering A less general approach would
be to narrow the exceptions caught by specific exception
handlers. This usually means that the exception filters must not
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accept more than the minimal needed set of exception codes.
While some handlers might need to catch access violations,
their widespread use is questionable. In addition to hardening
the exception handling in applications the system level oracles
need to be covered as well. This could, for example, be achieved
by treating a memory error within the system API or system
call the same as any error in the application. This means
instead of either silently discarding the exception or catching it
and setting the appropriate error state, but allowing execution
to continue, the application would need to explicitly employ
exception handling around these functions. This results in less
possibilities for an attacker to abuse such functionality, if the
application can ensure no invalid pointer is passed to this API
during normal operation.

Restricting access violations Another, more compatible, ap-
proach concerning memory probing itself is to only allow
handling and resuming of expected access violations. There are
two common reasons for a memory access to fail: (i) there is
no mapped memory at the given address or (ii) the permissions
of the memory do not allow the intended access. The first
case almost always results from a wrong calculation, or in our
case an exploit attempt, so it should be considered abnormal
behavior. The application tried to access memory that it has
not previously allocated and it also was not allocated by
the operating system for the process, so there should be no
references to this memory region. This is different compared
to the second case where the address itself is valid—there is
allocated memory at the specified location, but its permissions
do not match the requested access.

Generating a fault based on permissions can be intended, it
can be used for performance reasons as seen in Firefox [22],
so the application explicitly allocates a region of memory,
but marks it as inaccessible. In a way the program expects
an access violation to occur under some previously known
circumstances. As such it can be viable to only allow access
violations that occur at mapped memory to be handled. This is
similar to the method described by Gawlik et al. in regards to
removing the scanning primitive from Firefox, but we propose
to employ this policy at the system level. This means any
memory access to an unmapped page causes an unrecoverable
error, without invoking any exception handler in the faulting
process. This can be simulated by the application itself by
performing checks on the supplied exception information and
terminating in the case of an unmapped access. Using this
approach would still allow optimizations as used in Firefox,
but scanning attempts would be detected at the first unmapped
region encountered. While not providing as much security as a
hard policy concerning memory errors, it reduces the odds of
successful guessing significantly. This results in information
hiding providing the same security guarantees as in the absence
of crash resistance.

Rate based detection An orthogonal defense is a simple
anomaly detection that analyzes the number of access violations.
In principle, this is similar to the detection of crashes for
server applications to detect a BROP attack [29]. With some

applications using expected access violations for performance
optimizations, we wanted to establish a baseline of how many
such faults are generated during normal usage in practice. A
well known instance of this design choice can be found in
the Firefox web browser, so we used this program to test
our theory. We added logging code to report any fault caught
and handled in the browser. Using this modified version, we
crawled the top 40,000 websites according to Alexa [1] and
logged any occurrence. Our tests showed that none of these
websites exhibited an access violation when accessing the site.

Additionally, we tested the corner case of using asm.js-
heavy websites in the form of a dedicated asm.js bench-
mark [3]. This tool represents a stress test as it always forces
native code to be generated and applies some optimizations,
one of them being the usage of faults to catch out-of-bound
accesses. While we observed access violations, they are far
less frequent than during a probing attack similar to the one
described by Gawlik et. al. [22] with multiple thousands per
second. The benchmark triggered faults in groups of up to 20
in short succession, but the overall rate was much lower as
there were breaks between the groups. Even if we interpret the
peak rate as our baseline, the faults caused by actual scanning
attempts are several orders of magnitude more frequent.

As such, we conclude that the rate of access violations can
provide a viable heuristic for a defense. Even if an attacker
tries to circumvent detection by performing a far slower scan,
she will be slowed to a level where the duration will most
likely be too high to be practical.

VIII. CONCLUSION

In this paper, we showed that crash-resistant primitives are
not unique oddities. Most importantly, we demonstrated that
memory oracles exhibit specific properties that can be used
to locate them in real-world applications. We showed that it
is possible to develop tools that ease the discovery of those
code locations even for complex, closed-source programs. Once
located, these primitives can be used by an attacker in the same
way as demonstrated by previous work [22]. In addition, our
results show that not only client programs are threatened by
crash resistance: even servers can exhibit not only crash-tolerant
behavior (as demonstrated before), but such applications are
also susceptible to this new kind of vulnerabilities. Overall,
our results demonstrate that locating a crash-resistant primitive
is no longer left to pure chance, but poses a threat for defenses
that rely on information hiding in any kind of application.
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