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ABSTRACT

In the last years, the automotive industry has incorporated
more and more electronic components in vehicles, leading
to complex on-board networks of Electronic Control Units
(ECUs) that communicate with each other to control all ve-
hicle functions, making it safer and easier to drive. This com-
munication often relies on Controller Area Network (CAN), a
bus communication protocol that defines a standard for real-
time reliable and efficient transmission. However, CAN does
not provide any security measure against cyber attacks. In
particular, it lacks message authentication, leading to the pos-
sibility of transmitting spoofed CAN messages for malicious
purposes. Nowadays, Intrusion Detection Systems (IDSs) de-
tect such attacks by identifying inconsistencies in the stream
of information allegedly transmitted by a single ECU, hence
assuming the existence of a second malicious node generating
these messages. However, attackers can bypass this defense
technique by disconnecting from the network the ECU of
which they want to spoof the messages, therefore removing
the authentic source of information.

To contrast this attack, we present CopyCAN, an Intrusion
Detection System (IDS) that detects whether a node has
been disconnected by monitoring the traffic and deriving
the error counters of ECUs on CAN. Through this process,
it flags subsequent spoofed messages as attacks and reacts
accordingly even if there is no inconsistency in the stream
of information. Our system, differently from many previous
works, does not require any modification to the protocol
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or to already installed ECUs. Instead, it only requires the
installation of a monitoring unit to the existing network,
making it easily deployable in current systems and compliant
with required CAN standards.

CCS CONCEPTS

e Security and privacy — Intrusion detection sys-
tems; ¢ Computer systems organization — Embed-
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1 INTRODUCTION

In the last decades, the adoption of electronic components
inside vehicles has increased exponentially. Modern vehi-
cles incorporate up to 200 ECUs, which control not only
the engine but perform various functions that make driving
easier and safer (e.g., Automatic transmission, (Adaptive)
Cruise Control, Anti-lock Brake Systems, Autonomous driv-
ing technologies). ECUs form complex on-board networks
and their communication relies mainly on Controller Area
Network (CAN) [12], a bus communication protocol designed
by Robert Bosch GmbH in 1983 for automotive applications
to provide reliable and efficient in-vehicle communication in
real-time between ECUs. These features made CAN the stan-
dard for on-board vehicle communication for over 30 years
up to today. Moreover, vehicles are widely connected to the
outside world, through both local and remote connections
(Bluetooth, cellular radio, GPS systems and so on). This ten-
dency keeps increasing through the years, leading to consider
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them as giant computers moving on the road, able to send
and receive data and to communicate with each other.

However, the growth of on-board network systems and
their interconnection with the outside world has increased
both the attack surfaces and the vulnerabilities exploitable
for malicious purposes. Researchers have already shown that
it is possible to gain control of a vehicle, both through local
or remote communication, and alter its behavior [11, 15,
20, 27, 31]. The effects of such attacks range from simply
changing the audio track played on the radio, to very serious
consequences like disabling braking systems or stopping the
engine. Since Miller and Valasek’s demonstration of being
able to control remotely a Jeep Cherokee in 2015 [20], the
attention toward automotive security has increased.

Regarding CAN, one of its main weaknesses has proven
to be the lack of message authentication. Since nodes in the
network do not validate the origin of a message, an attacker
can send spoofed CAN messages that receiving nodes are not
able to distinguish from authentic ones. Therefore, after an
attacker exploits an externally communicating ECU, he or she
can proceed to send messages through this ECU to all nodes
connected on the same CAN bus and exploit them through
forged CAN frames. However, multiple ECUs nowadays check
received messages to control whether two different nodes are
sending two streams of information with the same identifier,
and react by not accepting any of the data received. For this
reason, a common approach, after the attacker has made his
way inside the network, is to cut off the target ECU from bus
communication. To achieve this, a known mechanism proven
possible by Palanca et al. in [22] takes advantage of the error
handling protocol of CAN to convince the target ECU to shut
itself off the network. At this point, the attacker is free to
send the forged and spoofed messages without handling the
stream of frames sent by the victim ECU. The capabilities
of the attacker, once he lays undisturbed on the network,
must be of concern. CAN, which ensures real-time message
transmission, is the most commonly used communication bus
for ECUs whose function affects driving and, consequently,
the safety of people in and around it.

Multiple measures have been proposed to either stop at-
tackers from getting access to CAN networks or to deny their
messages to be accepted by the receiving ECUs [5, 24, 33]:
they space from segmenting networks to make access to criti-
cal subnetworks more complex, to authentication protocols,
to IDSs. All these countermeasures have their pros and cons.
For example, authentication protocols usually require signif-
icant data and computation overheads or modifications to
the hardware of all concerned ECUs, rule-based IDSs are
limited by the accuracy of their own rules and can be circum-
vented [26], and machine-learning-based IDSs do not have
the certainty of not incurring into false positives. Therefore,
the automotive environment is still far from being secure and
new countermeasures are still required to defend from all
those attacks that are not yet covered.

Since an easy way for attackers to remain undetected while
spoofing messages consists in disconnecting ECUs from the

network to remove inconsistencies in the stream of informa-
tion, in this paper we present CopyCAN, an error-handling
protocol-based intrusion detection system for Controller Area
Network (CAN). CopyCAN detects when any ECU has been
cut off the CAN bus and to flag every further attempt to
transmit messages spoofed from the disconnected ECUs as
attacks. Furthermore, CopyCAN requires only to add its
monitoring unit to the existing network, making it easily
deployable in current systems without the need for modifying
other nodes. Finally, since CopyCAN requires a non-standard
CAN transceiver, we discuss the possible reactions that can
be implemented through it after an attack is detected.
In detail, we make the following contributions:

e We describe an easily deployable IDS which detects
if any ECU has been cut off from the communication
bus.

e We demonstrate the feasibility of our work by imple-
menting a proof-of-concept testbed.

e We test the performances of our IDS and suggest future
works to improve them.

e We analyze the possible reactions that can be imple-
mented once the attack is detected.

The paper is structured as follows: In Section 2 we describe
the information regarding CAN required to understand our
approach. In Section 3 the threat model of our methodology,
to better explain the usefulness of CopyCAN. In Section 4
we describe our approach. In Section 5 we present the imple-
mentation of our intrusion detection system focusing on its
feasibility and performances. Finally, in Section 6 we discuss
the possible reactions that can be implemented once our IDS
detects an attack. In Section 7 we describe the related works
and subsequentially in Section 8 we present our conclusions,
the limitations of our approach and suggest some potential
future works.

2 BACKGROUND CAN PROTOCOL

Since our approach directly relies on the inner workings of
CAN, we deem that an overview of its functions is necessary.
We will focus on the aspects directly related to our works:
after a brief overview of the protocol, we explain how mes-
sages are sent on the network at a physical and data-link
level since it is required to understand the error detection
and fault confinement mechanisms, which are explained after.
For additional details, we refer to the official CAN specifica-
tion [12].

Controller Area Network (CAN). Developed by Robert
Bosch GmbH [12], CAN is a serial communications proto-
col that efficiently supports distributed real-time control
between vehicle’s Electronic Control Units (ECUs). A typical
ECU, shown in Figure 1, consists of a CAN transceiver to
transform physical signals in logic values, a CAN controller,
generally implemented in hardware, to enforce the protocol
and a computing unit, which is usually a micro-controller
running custom firmware and software. CAN is a carrier-
sense multiple-access protocol with collision detection and
arbitration on message priority (CSMA/CD+AMP). This



Figure 1: Representation of the basic connections
amongst ECU components and CAN bus
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implies that each node has to check if the bus is free before
trying to transmit data, otherwise, it has to wait for a specific
signal before trying again. Collision detection and arbitration
on message priority is implemented so that when a node
starts transmitting data it still checks for collisions during
the arbitration phase, and when a collision happens only the
message with the highest priority keeps being transmitted.

2.1 Message Transmission

CAN messages are transmitted by sending different voltages
between the two wires of a twisted pair cable: when the volt-
age difference amongst the two wires is “high” (i.e., usually
between 3 and 5 volts), the value is defined as “dominant”
and is usually translated into a binary 0, while when the
difference is “low” (usually close to 0 volts), it is defined
as “recessive” and translated into a binary 1. In this way,
dominant values overwrite recessive ones: this is called zero-
dominance property. Although CAN does not require a clock,
it is a synchronous protocol in which time is split into bit-time
slots. Therefore, when two ECUs try to transmit a dominant
bit and a recessive one in the same slot, all receiving nodes
listening on the bus consider only the dominant value.

The CAN protocol includes four types of messages, called
frames: data, remote, error, and overload frames. As explained
later, only data and remote frames require arbitration. For
this reason, each data and remote frame is identified by a
message ID which is either 11 or 29 bits long, depending on
the employed CAN format (Standard or Extended). When
two ECUs start to transmit in the same bit-time slot, an
arbitration procedure takes place, where the message 1D
defines its priority: thanks to the zero-dominance property
explained above, 0 bits are considered dominant over 1 bit,
hence messages with numerically smaller IDs have a higher
priority. For the mechanisms explained above, CAN requires
a careful design of the network nodes and of the sent IDs. In
fact, although there is not any kind of enforcement of this
rule, in CAN there cannot be two different nodes sending
messages with the same 1D, otherwise, the arbitration phase
could be resolved with more than one node still writing on the

bus. We proceed to explain the four kinds of frames available
in CAN.

Data and Remote Frames. As visible in Table 1, are
composed of many fields. The first ones, both in the standard
and extended formats, mainly regard the arbitration phase.
Then, in data frames, we find the field related to the data
payload. Finally, in both data and remote frames, there is
the Acknowledgment (ACK) slot, which is sent as recessive
(1) by the transmitter, and has to be overwritten with a
dominant bit (0) by one of the receivers to validate the
message. All the fields described in the table, except the
Cyclic Redundancy Check (CRC) Delimiter, the ACK field,
and the End Of Frame (which have a fixed-form) are coded
with the method of bit stuffing: whenever a transmitting node
detects five consecutive bits with the same logical value to be
transmitted, it automatically inserts a complementary bit in
the currently transmitted bitstream. This complementary bit
is also recognized from receiving nodes, and, hence, discarded
as not being part of the original payload. Data frames are
usually autonomously sent on a fixed time interval, although
other nodes can request them by sending remote frames.

Error Frames. They consist of two fields: error flag and er-
ror delimiter. Usually, the transmission of one error flag leads
to a superposition of error flags, followed by the error delim-
iter. Error Flag It can be Active, consisting of six consecutive
dominant bits, or Passive, consisting of six consecutive reces-
sive bits. An ’error active’ node detecting an error condition
signals this by transmitting an active error flag. The error
flag’s form violates the rule of bit stuffing explained above:
as a consequence, all other nodes detect an error condition
and start transmitting their own error flag. Therefore the
sequence of dominant bits which can be monitored on the bus
results from a superposition of different error flags, leading to
a sequence long between a minimum of six and a maximum
of twelve dominant bits. An ’error passive’ node detecting
an error condition signals it by transmitting a passive error
flag. The ’error passive’ node then waits for six consecutive
bits of equal polarity: the passive error flag is complete when
these six equal bits have been detected. Error Delimiter This
field consists of eight recessive bits and signals the return to
normal bus communication.

Overload Frames. They are obsolete and rarely used. They
are sent to delay the transmission of the next data or re-
mote frame, mainly due to nodes requiring more time to
compute previous frames. They consist of the overload flag
(six dominant bits, like the active error flag) and the over-
load delimiter (eight recessive bits, like the error delimiter).
Overload frames, despite having the same structure of error
frames, are not transmitted due to the detection of an error
but are sent only in Interframe Space (IFS) (explained in the
next paragraph) to delay transmission. Since in the IFS the
method of bitstuffing is not implemented they do not raise
errors from other nodes.

Finally, data and remote frames are separated from pre-
ceding ones, whatever types they were, by the Interframe
Space (IF'S). This field contains a minimum of three recessive



Table 1: Description of the fields of CAN data and remote frames. Length distinguishes between 11/29-bit

fields when necessary.

Field Length Description
SoF': Start-of-Frame 1 Single dominant bit which signals the start of a message
ID: Identifier 11 Unique Packet Identifier
RTR (11-bit): Remote Transmission Request 1/0 Dominant for 11-bit data frames, Re-
cessive for 11-bit remote frames
SRR (29-bit): Substitute Remote Request 0/1 Must be recessive.
IDE: Identifier Extension Bit 1 Dominant for 11-bit data frames, recessive for 29-bit ones
ID-extended 0/18 Extended ID field for 29-bit data frames
RTR (29-bit) 0/1 RTR for 29-bit frames: dominant for
data frames, recessive for remote ones
RBO0,1: Reserved Bits 1/2 Reserved dominant bits for possible future expansions
DLC: Data Length Code 4 Number of data bytes
Data Field 0-64 Data transmitted by data frames
CRC: Cyclic Redundancy Check 15 Check for data sanity
CRC Delimiter 1 Must be recessive
ACK: Acknowledgment slot 1 Sent by transmitter as recessive, the receiver over-
writes it as dominant if the message is error-free
ACK delimiter 1 Must be recessive
EoF: End of Frame 7 Sequence of recessive bits

bits (Intermission) plus all the recessive bits representing
the bus idle condition, where no node is trying to transmit
and the bus is free, ready for the next dominant Start-of-
Frame. Overload frames can be transmitted only during the
Intermission field.

2.2 Error Detection

As explained above, when a node detects an error during
the transmission, it signals it by transmitting an error frame.
This leads also the other nodes on the bus to notice that an
error occurred and to transmit their own error frame. Here
the different types of error (not mutually exclusive) that can
occur:

e Bit error, raised if a node sending a bit on the bus
reads a different bit value than the one being sent. The
only exception is when the transmitting node sends a
passive error flag and it detects a dominant bit.

o Stuff error, raised if six consecutive bits with the same
polarity are detected in a message field that should be
coded with the method of bit stuffing.

e CRC error, raised if the CRC calculated by a receiving
node is different from the CRC transmitted in the
frame.

e Form error, raised when a fixed-form bit field contains
one or more illegal bits.

e ACK error, raised by a transmitting node when it does
not monitor a dominant bit in the ACK slot.

Whenever a bit, stuff, form or ACK error is detected
by any node, the transmission of an error flag is started
by the respective node at the next bit time. Whenever a
CRC error is detected, the transmission of an error flag
starts at the bit time following the ACK delimiter. Finally,

after a corrupted frame has been detected, such a frame is
automatically retransmitted as soon as the bus is idle again,
according to arbitration.

2.3 Fault Confinement

In order to handle faulty devices, a node on a CAN bus can
be in one of the following three states: ’error active’, ’error
passive’ or ’'bus off’. An ’error active’ node can normally
take part in bus communication and sends an active error
flag when it detects an error. An ’error passive’ node takes
part in bus communication but when it detects an error it
sends a passive error flag, which is detected and echoed by
other nodes only if the error passive node had already won
arbitration at the time when the error occurred. Moreover,
after a transmission, the ’error passive’ node has to wait
eight-bit time slots before initiating another transmission.
Finally, a ’bus off’ node is not allowed to participate in bus
communication.

To define in which state a node (ECU) is, each node keeps
track of its own two error counters: Transmit Error Count
(TEC) and Receive Error Count (REC). These counters are
modified according to the following rules (as taken from [12]):

(1) When a receiving node detects an error, its REC is
increased by 1, except when the detected error is a bit
error during the transmission of an active error flag or
an overload flag.

(2) When a receiving node detects a dominant bit as the
first bit after sending of an error flag, its REC is in-
creased by 8.

(3) When a transmitting node sends an error flag, its TEC
is increased by 8. However there are two exceptions
in which the TEC is not changed: if the transmitter



is ’error passive’ and detects an ACK Error and does
not detect a dominant bit while sending a passive error
flag, or if the transmitter sends an error flag because of
a stuff error that occurred during arbitration whereby
the stuff bit is located before the RTR bit, and has
been sent recessive but monitored as dominant.

(4) If a transmitting node detects a Bit Error while sending
an Active Error Flag or an Overload Flag, its TEC is
increased by 8.

(5) If a receiving node detects a Bit Error while sending
an Active Error Flag or an Overload Flag, its REC is
increased by 8.

(6) Any node tolerates up to seven consecutive dominant
bits after sending an Error Flag or Overload Flag.
After detecting the 14th consecutive dominant bit (in
case of an Active Error Flag or an Overload Flag)
or after detecting the 8th consecutive dominant bit
following a Passive Error Flag, and after each sequence
of additional eight consecutive dominant bits, every
transmitter increases its TEC by 8 and every receiver
increases its REC by 8.

(7) After the successful transmission of a message (getting
the ACK and monitoring no error until End Of Frame
is finished) the TEC is decreased by 1 unless it was
already 0.

(8) After the successful reception of a message (reception
without error up to the ACK Slot and the successful
sending of the ACK bit), the REC is decreased by 1,
if it was between 1 and 127. If REC was 0, it stays
0, and if it was greater than 127, it is set to a value
between 119 and 127.

(9) A node is error passive’ when its TEC or REC equals or
exceeds 128. An error condition letting a node become
‘error passive’ causes the node to send an Active Error
Flag.

(10) A node is 'bus off’ when its TEC is greater than or
equal to 256.

(11) An ’error passive’ node becomes ’error active’ again
when both TEC and REC are less than or equal to
127.

(12) A ’bus off’ node is permitted to become ’error active’
(with its error counters both set to 0) after 128 occur-
rences of 11 consecutive recessive bits monitored on
the bus.

3 THREAT MODEL

Threat and attacker modeling are of primary importance
to assess the security of cyber-physical systems [23, 35], es-
pecially in the automotive field where the safety of people
is involved. In fact, the possibility of a remote attacker in
automotive networks was not considered when CAN was
designed. Hence the protocol has not been designed by tak-
ing into account security. Furthermore, the necessity for a
cost-effective and real-time protocol led to the choice of hav-
ing short data frames (maximum 8 bytes of payload) and
medium bandwidth (in the best case up to 1Mbps), which

Figure 2: Representation of Targeted DoS as in [22]
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do not leave a lot of space for implementing security features
at a later time. Over the years, with the proliferation of wire-
less technologies such as Bluetooth, Wi-Fi, and Long Term
Evolution (LTE), some ECUs started to be designed with
external communication capabilities and are now reachable
from remote. However, these ECUs are still connected to
all other ECUs inside the vehicle through wired on-board
networks. Nowadays, on-board communication does not con-
sist of a single or two CAN networks on which all ECUs are
connected, as was the standard 20 years ago. In fact, secure
gateways [34] divide it into various sub-networks that limit
the capabilities of the attackers.

3.1 Attacker Capabilities

We consider an attacker who has already obtained control of
(or installed) an ECU on the CAN bus. The attacker has com-
plete knowledge of the system and the functionalities of each
ECU on the network, and he also knows which CAN messages
are required to control each functionality. The attacker can
either be connected from remote or from inside the vehicle,
and he is aware of CopyCAN being installed on the network.
The only requirement that we have is that the attacker does
not have physical access to the ECU on which our IDS is
installed. This is a common assumption in all previous works
on CAN related countermeasures since if the attacker has
such capabilities, he has no strictly “cyber-related” methods
to achieve his goals [7].

3.2 Attack Model

We can divide attacks on CAN into three categories:

Sniffing. Sniffing is not usually considered a threat. Since
the nodes are connected to the bus network, reading the
messages from and to other nodes just requires to be physi-
cally connected. Furthermore, the authentication protocols
mentioned in Section 7 does not encrypt the whole message.
The reason for this is dual: encryption would require an even
higher computation time, and usually, CAN messages are
not interesting to be sniffed for an attacker since they do not
carry data meaningful to steal.

Denial of Service (DoS). DoS is instead usually considered
a threat, but not to the safety of the people in and around the
vehicle. In fact, since ECUs may fail due to malfunctions while



the vehicle is on the road, the whole system has been designed
to ensure safety anyway. However many features, comprising
the possibility to drive the vehicle, could be compromised due
to the malfunctions. For this reason, an attacker with financial
goals or that targets the reputation of the manufacturer may
still have interest in DoS attacks. To implement a DoS the
attacker has two options: either he floods the CAN bus with
packets with ID “0” to win all arbitrations, although this
approach is easily detectable by an IDS, or he exploits the
same characteristic of CAN exploited by Palanca et al. [22]
and Cho et al. [8], creating a so-called targeted DoS attack.

This attack takes advantage of the rules for fault con-
finement provided by the CAN protocol. Essentially, apart
from rare exceptions (as explained in Section 2.3), when a
transmitting node sends an error flag its TEC is increased
by 8: this means that after 16 invalid transmissions an ’er-
ror active’ node with TEC = 0 will become ’error passive’
(TEC = 128), and after 16 more invalid transmissions it will
go in ’bus off’ state (TEC = 256), disconnecting itself from
the bus. The goal of the attacker is therefore to convince
the target node of being defective by triggering the victim’s
fault confinement protocol enough times. There are mainly
two ways to implement this attack: the first one, presented
by Palanca et al. [22] and represented visually in Figure 2,
requires a non-standard CAN controller and can be divided
into two phases: The attacker first has to detect the ID of one
of the frames sent by the target ECU. Second, the attacker
waits for the victim to win an arbitration, then waits for the
transmission of the payload: at this point, he overwrites one
of the recessive bits of the victim’s message with a dominant
one. This causes the detection of a bit error by the victim,
signaled by the transmission of an error flag and a subse-
quent new attempt to transmit the frame. The TEC of the
victim increases by 8 for each time the frame is overwritten.
Therefore, the attacker only needs to perform 32 straight bit
overwrites of a frame sent by the victim node in order to block
that node in ’bus off’ state. This attack is uncounterable by
the victim. However, as stated by Palanca et al. [22], the
requirement of physical modification of the CAN controller
of the attacking device, makes this attack hardly feasible
without previous physical access to the vehicle.

On the other hand, the second kind of targeted DoS, as
presented by Cho et al. [8] is not as reliable as the first
one, but does not necessarily require to modify the CAN
controller, which makes it much more feasible to implement
in remote attacks.

Figure 3 shows how this attack works: In this case, the
attacker requires to detect the ID of one of the frames sent by
the victim, and the frequency at which messages with that
ID are transmitted. Obtained this information, the attacker
sends a message with the same ID but with an 8 bytes long
sequence of “0” as payload, synchronized with the message
of the victim. If the attack is timed precisely the ID sent
by the victim and the one sent by the attacker overlap,
hence convincing both the victim and the CAN controller of
the attacker (which has not been modified) that they won
arbitration. However, since the data payload of the attacker

is composed only of dominant bits, and assuming that the
victim is sending meaningful data and not only dominant bits
as the attacker does, at least one recessive bit of the victim is
going to be overwritten by the attacker, hence triggering its
fault confinement protocol and sending an error active flag
on the bus (which triggers also the fault confinement protocol
of the attacker, increasing its TEC of 8 points). Both ECUs
repeatedly try to send their own message, not realizing that
they are being overwritten by the other and both repeatedly
increase their TEC. However, as explained in [9], when both
switch to “error passive” state, the victim can only send error
passive flags, which are not detected by the attacker who
keeps transmitting successfully his frames, hence only the
victim increases its TEC until switching to “bus off” state.
The unreliability of such an attack comes from the unpre-
dictability of the precise instant in which the victim sends the
first bit of its message. If the attacker anticipates or delays
the dispatch of its frame of a “bit time slot,” the attack fails.

Spoofing. Finally, spoofing attacks are the most threatening
ones. Amongst the real-world attacks explained in Section 3.3,
all those that affect the safety of people in and around the
vehicle comprise the use of spoofed CAN messages. Spoofing
attacks are easier than targeted DoS to implement, since the
only requirements for the attacker are to know the ID of the
frame that he wants to spoof and to know how the data is
encoded in the payload (i.e., how the receiving ECU translates
the bits of the payload into meaningful information). After
the attacker obtains this knowledge, whether it is public
or through reverse engineering of a similar vehicle, he can
proceed to send the packet to the receiving ECU, which will
consider it as being transmitted from the spoofed victim.

However, through the years countermeasures have been
applied to protect the network from such attacks. There are
three countermeasures that the attacker needs to bypass to
spoof the message: (a) the attacker needs not to cross the
boundaries of rule-based IDS. To obtain this goal he just
requires to know the rules and respect them when implement-
ing the attack: in fact, as mentioned in Section 7, not all
attacks require to cross the boundaries set by rule-based IDS.
(b) The attacker needs to ensure that the receiving ECU
considers his data over the ones of the authentic transmitting
node. In order to do so, Miller and Valasek [31] increased their
frequency of transmission, but this may trigger frequency-
based IDS. (c) The attacker has to avoid to be detected by
Parrot [9] or similar countermeasures.

However (a) is feasible to bypass, knowing the rules of the
IDS, and in order to take care of (b) and (c) the attacker
can implement a targeted DoS against the transmitting ECU
of which he wants to spoof the messages. It is important to
clarify that it is not possible for the attacker to delete and
substitute only the messages he wants to spoof since if an
ECU detects that one of its messages is faulty, it tries to send
it again up until either it succeeds or it gets shut off.

As we explained up until now, this is the most threatening
kind of attack to automotive networks, since it threatens the



safety of people in and around the vehicle. The implementa-
tion of the attack through a previous DoS is also currently
the only one that cannot be detected. CopyCAN focuses
on detecting this implementation of the attack by knowing
which ECUs should be in “bus off” state.

3.3 Real World Attacks

Researchers implemented many attacks in the last ten years
to demonstrate on one side the capabilities that an attacker
has once got access to CAN networks, and on the other
side the lack of security in the design of vehicles. Initially,
in the early 2010s, Koscher et al. [16] and Checkoway et
al. [7] proved first that, by connecting physically to the
CAN networks of the vehicle, they could take control of it
in some situations, and second that some early-stage attack
surfaces, such as a CD player or a Bluetooth device, were
exploitable if already connected to such CAN networks. Some
years later Miller and Valasek published three papers on
automotive security: in the first [31] they made an in-depth
analysis of the capabilities of an attacker with CAN bus
access, proving that more equipped vehicles, with more safety
and comfort accessories, were more vulnerable to attacks.
In the second [19] they analyzed the topology of multiple
vehicles, some newer than others, discussing the security
of each one. Finally, in the third [20] they demonstrated
an attack performed completely from remote, through the
cellular connection, on a one-year-old vehicle, on which they
managed to force cyber-physical controls such as park-assist-
related steer, brake and acceleration. For this third attack,
they required to exploit two ECUs in order to obtain the
capability to write on the correct CAN bus. Once on the
bus, they were able to perform all the different attacks by
spoofing CAN messages, without requiring to control directly
the ECU that performed the brake, steer or acceleration.
After these works, different researchers proposed similar real-
world attacks implementable from remote on newer cars
such as on a Tesla S [27] and BMWs [15], demonstrating
that although manufacturers have implemented some security
features in vehicles, a skilled attacker can still gain access and
take control of the vehicle. Finally, all the attacks presented
up to now consist mainly of spoofing the messages of other
ECUs. The last real-world attack we cite, implemented by
Palanca et al. [22], shows the possibility for the attacker to
target one ECU and disconnect it from the CAN bus through
a targeted DoS attack.

4 APPROACH

The final goal of CopyCAN is to detect when any ECU has
been disconnected from the network through the exploitation
of the fault confinement mechanism of CAN, as explained
in Section 3.2. Specifically, CopyCAN keeps a copy of the
Transmit Error Count (TEC) of the protected ECU. The
core concept behind our approach is that, since the attacker
abuses of the fault confinement protocol of CAN to shut
down the victim ECU, we can exploit the same protocol to
detect when said ECU switches to “bus off” state.

We proceed to explain in detail the reasoning behind Copy-
CAN’s behavior: first, we explain the basic assumptions re-
quired for its functioning, then we proceed to explain how
the rules for modifying the TEC are implemented. Finally,
we describe its model through the use of an “extended finite
state machine”. To conclude the description of our approach,
we discuss potential reactions to the detection of an attack.

4.1 Assumptions and Physical Placement

CopyCAN does not use a standard CAN controller. Since it
reads every single bit transmitted on the bus, it requires to
retrieve the data directly from the CAN transceiver.

CopyCAN requires to be on the same physical network of
the protected ECUs and the messages cannot be transmitted
through a gateway since this would not relay the CAN errors,
making it impossible to detect when the victims switch to
“bus off” state. There are no theoretical limitations to the
number of ECUs simultaneously analyzed by our IDS.

We assume that CopyCAN knows all the IDs “owned”
by each protected ECU (i.e., all the IDs of messages that
each ECU transmits) since it needs to understand, while an
error occurs, whose TEC should be incremented. However,
CopyCAN does not require to know any other information
about the victim.

Lastly, we assume CopyCAN to be listening on the network
since the moment in which the first packet is sent, since oth-
erwise, it may not be aware of previous events that triggered
a TEC change in one of the protected ECUs.

Similar assumptions are also done by the majority of other
state-of-the-art IDSs for CAN.

4.2 Fault Confinement Rules Analysis

CopyCAN detects the increment or decrement in the Trans-
mit Error Count (TEC) of the protected ECU through the
analysis of the fault confinement rules listed in Section 2.3.
We refer to them to explain how we implemented them.

As we already mentioned, our goal is to know when the
defended ECU gets disconnected from the network, switching
to “bus off” state. Rule (10) explains that this happens only
when the TEC of the ECU reaches 256. Therefore we are
only interested in counting the TEC, and not the REC, of
the protected ECU. For this reason, rules (1),(2),(5) and (8)
are not necessary. Since the IDS does not require to know
when an ECU goes in “error passive” state, rules (9) and
(11) are also not of our concern.

The basic definition of (3) (“when a transmitting node
sends an error flag, its TEC is increased by 8”) can be imple-
mented in our IDS by increasing the TEC of the protected
ECU if it is the current transmitter and if we monitor an
error flag during its transmission.

The first exception of (3) regards a corner case where a
transmitter is error passive and it detects an ACK error.
In this case, if no other node sends an active error flag,
the transmitter does not increase its TEC. This is easily
implemented since, from the point of view of the bus, no
error flag is detected: in fact, the passive error flag consisting



of six recessive bits is not recognized as an error by other
nodes since the bit stuffing rule has been deactivated since
the CRC delimiter. Therefore, we just avoid increasing the
TEC of the transmitter already when we detect the missed
ACK and wait for the subsequent flag instead.

The second exception regards events happening during
arbitration, which is not of our concern since they are not
exploitable by the attacker (i.e., the attacker cannot know
yet whether its target is writing on the bus).

(4) represents the corner case in which the CAN transceiver
of the protected ECU fails in a specific way: reading a bit
that should be dominant as recessive during the transmission
of an active error flag. This event is not visible by our IDS
since there is no way to detect it on the bus. However, since
the bit transmitted on the bus is dominant, the attacker
cannot exploit this to bypass CopyCAN. Also, as explained
later in the implementation in Section 5.2, we never found
occurrences of this corner case in our tests.

(6) represents another corner case: the seven dominant bits
are composed by the active error flag of other nodes (stuff
error caused by the first error flag composed of six equal
bits) and one more dominant bit (which we assume to be
comprised in the count just to double-check the failure of an
ECU, since there seems to be no justification for it in the
official CAN specification [12]) .

After these seven dominant bits, the node expects the error
delimiter (eight recessive bits). In case this does not happen,
this means that an error occurred and an ECU is flooding
the network with “0,” or the node is reading incorrectly from
the bus. In order to try to disconnect the faulty node from
the network, the TEC of all transmitters is increased by 8 for
every time they read eight consecutive dominant bits after
they send an error flag.

We are interested in this rule only if it is triggered when a
protected ECU is transmitting. Since our IDS is only aware
of the transmissions on the bus, and it does not know the
error type that triggered the first error flag, this rule creates
ambiguity. In fact, in a sequence of “0,” we are unaware of
when the error flag of the protected ECU has started: the first
bit of the error flag could be from the first of the sequence
up to the seventh. If it is the first, the protected ECU will
consider the fourteenth “0” as a trigger of rule (6). If instead,
the seventh “0” bit of the sequence is the first one of the
error flag of the protected ECU, the rule will be triggered
only at the twentieth consecutive “0”.

Is it important to notice, although, that in a functioning
network only 12 consecutive “0” can appear consecutively:
in fact after six consecutive “0,” independently from the
reason behind them being transmitted, every error active
node should detect a stuff error and start sending its own
flag. After this event, every node on the network should be
waiting for eight recessive bits (error delimiter) monitored
on the bus. Therefore, there is no reason to detect another
“0” after the two sequences of six dominant bits justified by
the error flags. In fact, the chances for this faulty behavior to
repeat itself enough times to trigger the IDS into considering
the protected ECU in “bus oftf” state, without it actually

being in that state, are really low in real-world scenarios.
This is supported by our tests since this behavior was never
triggered. On the other hand, waiting for the twentieth bit
would enable an extremely skilled attacker to trigger the “bus
off” state of the protected ECU without being detected by
the IDS. For these reasons, we choose to count the increasing
by 8 of the TEC after the thirteenth bit detected on the bus
and each eight consecutive dominant bits after that.

(7) is implemented by decreasing the TEC every time the
protected (ECU successfully transmits a message.

(12) is implemented by resetting the TEC of the protected
ECU after 128 occurrences of 11 consecutive recessive bits
on the bus. Although it may be possible for the protected
ECU to “lose” one of the said occurrences, the attacker has
no capability of controlling this event.

4.3 Algorithm Modeling

As mentioned before, CopyCAN requires to read the bus bit
by bit, retrieving data directly from the CAN transceiver. We
proceed to explain the algorithm behind CopyCAN, repre-
sented through an extended finite state machine in Figure 4,
which explains how we parse messages and how we update
the counters of the protected ECUs. For the sake of com-
prehensibility, we describe the algorithm required to parse
frames with 11-bit IDs, although it can be easily be adapted
to parse frames with 29-bit IDs by following Table 1.

In order to handle the parsing of the frame we require a set
of variables that we proceed to list: BC (Bit Counter), used
to check which frame’s field we are processing: this counter
is increased by 1 whenever we read a bit. PC (Polarity
Counter), used to keep track of how many subsequent bits of
the same polarity we read: in this way we can both handle
stuff errors and update the bit counter after bit stuffing takes
place. This counter is increased by 1 if the current monitored
bit is identical to the previous one, reset to zero otherwise.
STUFF is used to store the number of stuffing bits inserted
during a frame transmission: after we read five subsequent
bits with the same polarity, we increase this variable by 1.
DL is used to store the number of data bytes of the frame.
formErr, which can assume 0 or 1 values, is used to handle
form errors, as explained later in details. Finally, we use
TEC to keep track of the TEC of the protected ECU. We
divide the analysis in error-free parsing, which describes the
situation in which all ECU behave correctly and no error
is detected, and error handling, in which we describe what
CopyCAN does in case an error occurs.

Error-free parsing. The process starts in an idle state
during the ignition of the vehicle, therefore knowing that
the TEC of each ECU is currently equal to 0. All variables
mentioned above are also initialized to 0. As long as we read
recessive bits, the bus is in idle state. Once we monitor a
dominant bit, representing the Start of Frame (SoF), we
move to the SoF state. Since from now on bit stuffing is
implemented, we start updating the Polarity Counter (PC)
as explained above. The algorithm can now process the ID
that is being written on the bus and store it in order to handle



INIT:
BC:=0
PC:=0
STUFF :=0
DL :=0
formErr :=0
TEC:=0

count(1) ==3

count(0) %

OVERLOAD
FLAG

BC:=0
PC:=0
STUFF :=0 | count(1)==3
DL :=0
formErr :=0

formErr == 1 &&
count(1) == 13

OVERLOAD
DEL

formErr == 0 &&
count(1) ==7

formErr := 0
formErr := 1

TEC := TEC-1

BC==
444DL+STUFF

== 0 && count(0) >0:
TEC :=TEC+8

formErr := 0

TEC :=TEC+8

BC != 36+DL+STUFF

34+DL+STUFF

o1

BC == 12+STUFF

o

IDE, RBO

BC == 15+STUFF

o1

RTR ==0 &&
BC == 19+STUFF

19+DL+STUFF

o1

Figure 4: Graphical representation of the state machine model. In black, the transitions to error-free states.
In red, transitions to an error related states. In blue, transitions to overload related states. When only a
number is used to describe the transition between two states (arrow), we consider it to be the bit monitored

on the bus.

the TEC of the corresponding ECU. The ID is composed by
the second to twelfth bits of the packet unless bit stuffing
is required, in which case we need to add some bits and
update properly the bit counter (e.g., in case of ID 0x16,
which is transmitted as 00000010000, we expect to read
000001010000). Then, we memorize the next bit, which is
the Remote Transmission Request (RTR) bit as expected
by the protocol, to distinguish between data and remote
frames. Now, in the case of 11-bit ID frames, the Identifier
Extension (IDE) bit and reserved bit are both expected to be
dominant. Note that, when considering 29-bit ID frames, also
the IDE should be stored to handle the distinctions between
the two different employed standards. Once we parse the
Data-Length Code (DLC) and store its value, we either move
to CRC state in case the RTR bit was recessive, meaning
that we are parsing a remote frame, or we read the data

payload in case the RTR bit was dominant (data frame): in
this last case we read 8 x DL bits plus potential bit stuffing.
After we parse the CRC, the polarity counter is deactivated
since the bit stuffing rule is not applied from now on. We
proceed to read the last ten bits of the frame: we expect
them to be all recessive except the ACK slot in case of a
positive acknowledgment of the frame. If no error occurs we
move directly from DEL/ACK/EoF state to Intermission
Field (IF) state: during this change of state we decrease by 1
the TEC of the protected ECU since we parsed an error-free
frame. Finally, after three more recessive bits representing
the IF, the algorithm moves back to the idle state, waiting
for the next transmission. Moreover, the algorithm handles
the transmission of overload frames, signaled by a dominant
bit monitored during IF state. In this case, we process up to
twelve consecutive dominant bits, due to the propagation of



the overload flag, followed by eight consecutive recessive bits,
representing the overload delimiter. After this, we move back
to the idle state, as expected by the protocol.

Error Handling. If at any moment during the transmis-
sion the polarity counter signals that six consecutive bits
with the same polarity have been read (PC' == 5, which is
feasible only since we read the ID until we read the CRC,
since the PC is deactivated after the latter field), the al-
gorithm switches to a state that handles the error flag. As
explained in Section 4.2, the error flag should be from six
to twelve bits long due to error propagation. If it is longer,
the exception of rule (6) is triggered. Once the algorithm
detects a recessive bit, it switches to error delimiter state.
Both when the exception is raised both when the algorithm
switches to error delimiter state, the TEC of the protected
ECU is increased by 8. After eight consecutive recessive bits,
representing the error delimiter, we go back to IF state as
expected by the protocol. The only error case that is not
taken into consideration by the previous procedure happens
when during the last twelve bits (CRC delimiter, ACK slot,
ACK delimiter, End of Frame (EoF)), a form error arises. In
this case, even if an error happens we may not detect an error
flag: since the bit stuffing rule is currently not applied, if all
the ECUs on the network are in error passive state, even if
they detect the error, they will write six consecutive recessive
bits on the bus, which is the same sequence of bits that we
detect in an error-free transmission. In order to handle this
event, if we detect a dominant bit among these fields (ex-
cept for the ACK slot, where the dominant bit represents an
ACK), we set formErr to 1 and move to the error flag state.
Here we expect one of two situations: either we monitor six
consecutive dominant bits, representing the active error flag
of the transmitting ECU, followed by the eight recessive bits
of the error delimiter, or we monitor fourteen consecutive
recessive bits in case of a passive error flag plus its delimiter.
Through formErr we can handle properly both situations:
after reading the first bit of the error flag, if this is dominant
we set the variable back to zero to signal that we expect only
eight consecutive recessive bits once moved in error delimiter
state, before moving to IF state. If instead, the first bit is
recessive, we move immediately to error delimiter state with
formErr equal to one, signaling that we expect 14 consecutive
recessive bits before moving to IF state. Whenever we go back
to the idle state, in case of both an error-free transmission
and an error handling situation, we reset all variables except
TEC. Finally, the situation after the ECU goes “bus off” is
handled in parallel: when the TEC reaches 256, a check starts
for all 11 bits long sequences of recessive bits and a counter
is increased. When the counter reaches 128 we reset the TEC
and assume the ECU to be connected again.

5 EVALUATION

We describe the environment created to evaluate our ap-
proach, both under feasibility and performance point of view.
After that, we discuss the results of our proof-of-concept
implementation. We run two different tests. The first to
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Figure 5: Overview of the testbed

understand the feasibility of our methodology and its limita-
tions, while the second to analyze the performances required
to sustain high speed CAN communication.

5.1 Testbed

To represent a real-world environment we implement four
different components in our testbed: the attacker (A), which
performs the bitbanging attack described in Palanca et al. [22]
by overwriting the recessive CRC delimiter of the frame with
a dominant bit. The protected ECU (P), on which the attack
is performed. A traffic generator node (7T'), which generates
frames with different IDs from the ones sent by P. Finally, the
last node on the testbed is the proof-of-concept of our IDS,
CopyCAN. The hardware specifications for the attacker A and
for CopyCAN, visible alongside their connections in Figure 5,
comprise an ATMega328P microcontroller [4] (Arduino Uno
rev3) connected to an MCP2551 [14] CAN transceiver. The
CAN controller in both cases has been implemented in soft-
ware due to the necessity of making it non-compliant to CAN
specifications. The traffic generator T and the protected ECU
P are composed of a CANTact [10] USB to CAN interface
that works as CAN controller and transceiver connected to a
computer.

5.2 [Feasibility Tests

We run two different feasibility tests.

The first test analyses a basic attack recognition that does
not require 7. When P tries to send a frame, A flips the
CRC delimiter bit of the frame from recessive to dominant,
generating the error that increases the TEC of P and triggers
a new attempt to send the message. After 32 attempts of



Table 2: Performance evaluation results on different processors

Processor Frame processing time | Bit processing time | Increment | Exp. CAN rate
ATMega328P (Arduino Uno rev3) 678us 7.2us 0 (base) 100Kbps
Broadcom BCM2836 18us 0.2us 37x . 1Mbps
(Raspberry Pi2)
Intel i7-7700HQ 1,87us 0.02us 362x ., 1Mbps
(Dell XPS 15 9560)

transmission “denied” by A, P switches to bus off state. We
ran this test 50 times and CopyCAN always detected the
disconnection of the victim.

The second test recognizes whether the exceptions de-
scribed in Section 4.2 regarding rule (4) and (6) of the fault
confinement protocol affect the bus and are relevant for the
correct behavior of CopyCAN. To stress the IDS for this
test, the traffic generator T is connected to the bus and
writes frames with different IDs. While T writes frames, the
protected ECU P does the same. In the first stage of the
test, the attacker A is switched off: the goal of the test is to
check if any of the exceptions mentioned above occur due to
some possible collisions between frames written by P and T,
causing the TEC of P to increase. After a prescribed period
of time A performs the DoS attack against P: if CopyCAN
detects the disconnection from the bus on P it means that
even if some collisions happened, none generated an exception
that was not detected by CopyCAN. In fact, in case some
undetectable exceptions occurred, P would stop transmitting
frames before CopyCAN could signal P’s transition to “bus
off” state. Hence, CopyCAN would never detect the discon-
nection of P from the bus. We ran the test 50 times, with
up to 15 thousand frames sent per test. In all the tests the
IDS detected the attack at the exact moment it happened.

5.3 Performance Analysis

We choose the ATMega328P for the feasibility tests due
to its real-time capabilities that derive from the lack of an
operating system. This property enables us to trust the in-
terrupts, required to read and write bits, to be precise to
the microsecond and not lose synchronization with the bus.
Other devices with non-real-time operating systems may have
faster processors, but do not ensure reliable timings in re-
acting to interrupts. This may lead the IDS to skip bits and
lose synchronization between the bus and the state machine.
However, the ATMega328P microcontroller does not have a
fast enough clock rate to keep up with the maximum baud
rate of CAN, which is 1Mbps. In fact, after multiple tests,
we detected that the controller is not able to process all bits
(and therefore to update correctly the counters) if the baud
rate surpasses 50Kbps. Therefore, we proceeded to execute
the same code on other systems with higher-end processors
to check how much improvement we can obtain. Since our
goal is to evaluate only the execution speed of the algorithm,
without taking into account the variable delays necessary
for reading each bit on the bus (which would be unreliable
due to the lack of real-time operative systems on top of the

processors we used), we produced a sample CAN data frame
of 94 bits (5 bytes of payload) and fed it directly to the code
as it was the CAN bus output. In Table 2 we show the timing
results. The processing time is calculated as an average of 100
tests to process the whole 94-bit frame. The results highlight
that with higher-end processors the IDS can easily sustain
the maximum CAN rate of 1Mbps. In the case of the Intel
i7-7700HQ it should theoretically sustain the CAN FD [6]
maximum baud rate of 12Mbps during the transmission of
the data payload. Due to the lack of an actual interrupt and
retrieval of each bit on the bus, the results are optimistic.
In fact, in the case of the ATMega328P, they justify the
maximum 50Kbps obtained in our tests. The bit reading
time of Arduino Uno rev3 is 4us that, added to the 7.2us
processing per bit gives us 11.2us or a maximum baud rate
of 89Kbps, requires us to step down to the lower CAN com-
pliant baud rate of 50Kbps. Depending on the specifications
of the hardware we can then conclude that the increment
may be lower than calculated, but given that the minimum
time between one bit read and the other should be 1us, we
have respectively 0.8us and 0.98us to read the bit, which
should be sufficient with hardware more performing than the
Arduino Uno connected to the MCP2551 CAN transceiver.

6 DISCUSSION ON REACTIONS

Considering the properties of CopyCAN explained in Sec-
tion 4 and the threat model previously described in Section 3,
we proceed to discuss two reactions and their feasibility. As
explained in in Section 3, the severity of the attacks that
CopyCAN protects from is high: a skilled attacker can exploit
it to affect the safety of people in and around the vehicle.
Moreover, in case of vehicles connected to the external envi-
ronment, similar attacks have already been proven feasible
from remote.

The first reaction consists in alerting other ECUs and
eventually the driver of the attack attempt. In this case, the
ECUs can switch to a downgraded mode, less reliant on CAN
communication for safety purposes, until the vehicle is reset.
The driver, likewise, could for example send the vehicle to
a repair shop to investigate the problem and detect which
ECU has been compromised.

The second reaction is implementable thanks to the fact
that CopyCAN already requires a modified CAN controller.
In fact the same device can implement both CopyCAN and
a system to perform targeted DoS attacks such as the one
from Palanca et al. [22]. Hence, we suggest that the most
immediate reaction, once CopyCAN flags a message as an



attack, should consist in a targeted DoS attack against the
attacker.

In case of false attack detections, it is evident that this
reaction may be risky. However, even if we cannot consider our
methodology free from false positives, due to the exceptions
explained in Section 4.2, the probability of generating false
attack detections is very low in real-world scenarios, as shown
by our tests in Section 5.Therefore, due to the dangerousness
of the attacks and to the extremely low chances of false
positives, we believe that this reaction is a viable solution.

We proceed to discuss the possible outcomes of imple-
menting the defensive DoS: The first case happens if the
compromised ECU from which the attack is being carried
out can be switched to “bus off” mode, such as in the sec-
ond targeted DoS attack presented in the threat model (in
Section 3.2) where the attacker uses a standard CAN con-
troller. In this case, the attack is denied completely and the
attacker has no chance of success in spoofing the message.
This case has no downsides. The second case happens if the
compromised ECU cannot be switched to “bus off” mode.
In this case, the attacker can keep trying to send spoofed
messages, that will be nullified by CopyCAN. However, if
the attacker tries to send the spoofed messages too fast the
bus may become unavailable. We would like to point out
that in this case the attacker already has the capabilities to
implement a DoS attack against the whole bus, hence we
are still blocking him from achieving his goal. Moreover, as
explained in Section 3.2, the vehicle already implements mea-
sures to ensure safety in case of a network-level DoS attack.
The third case represents the situation in which the IDS flags
a false positive. In this case, the reaction shuts the ECU
down before it would actually go “bus off”. However, even
supposing that one of the exceptions presented in Section 4.2
leads to CopyCAN counting a higher TEC than the actual
one, we claim that the event of the ECU going “bus off” was
already destined to happen, since the only cases in which the
exceptions could happen are related to either the protected
ECU or another node generating too many errors, showing a
faulty behavior.

7 RELATED WORKS

CAN has been implemented on vehicles for around thirty
years. During this period lots of different countermeasures
have been proposed to solve its considerable security flaws:
these countermeasures range from the simple insertion of
secure gateways to divide the on-board network into subnet-
works [34], up to the more complicated implementation of
honeypots [32]. There have also been proposals to replace
CAN with network protocols on which security is more easily
implemented [22, 30], such as automotive Ethernet [13]. How-
ever, the real-time properties and the lower costs of CAN and
its successor Controller Area Network with Flexible Data-
rate (CAN-FD) make them mandatory in some subnetworks.
In the latest years the trend regarding CAN-related secu-
rity has been mostly focused on two main countermeasure

categories: authentication protocols and Intrusion Detection
Systems (IDSs).

Regarding authentication protocols, the general idea
relies on using part of the CAN packet to transmit a hash
of the message, encrypted through a secret key, alongside
a counter (to defend from replay attacks). Although some
state-of-the-art proposals like LeiA [24], VatiCAN [3] and
VeCure [33] strengthen the security of CAN, their downsides
are still relevant: the decreases in response times and data
bandwidth generated respectively by the calculation and the
transmission of the hash, make the usage of authentication
protocols hardly feasible due to computation requirements,
network overheads and secure key pre-sharing [9, 25]

Regarding Intrusion Detection Systems (IDSs), in-
stead, the general idea relies on reading the bus and detecting
whether an attack is being performed. We can divide IDSs for
CAN in three categories, depending on the approach they ap-
ply to detect attacks. Frequency-based IDSs, such as [21, 28],
take advantage of the mainly periodic trend of CAN commu-
nication (ECUs send messages with the same ID at regular
intervals) and detect abnormal behaviors when the frequency
of a message changes unexpectedly. Specification-based 1DSs
comprise all those IDSs that detect inconsistencies of data
through the analysis of a set of given rules (all the traditional
rule-based IDS are included in this category). Three of the
latest and less trivial examples are Matsumoto et al.’s [18],
Parrot [9] and the new STINGER CAN transceiver [2] from
NXP [1]. Their basic functioning is based on the knowledge
of which CAN IDs are transmitted by the ECU they are
installed on (as explained in Section 2 each ID is sent by
only one CAN node for each network). When one of such
IDs is transmitted on the network, if it was not sent by
the ECU on which one of the three proposals is installed
on, they flag it as an attack and react accordingly. We find
important to clarify that CopyCAN cannot be implemented
alongside Parrot and Matsumoto et al’s work, or at least
not on the same IDs. Their behavior would trigger Copy-
CAN into considering all future messages with that ID as
spoofed. Finally, data-sequence-based IDSs comprise all those
IDSs that detect intrusions by analyzing the changes in the
data payload of messages through time (e.g., Markovitz and
Wool [17], Taylor et al. [29]) IDSs have fewer downsides com-
pared to authentication protocols but are also less effective.
The final goal of an IDS is only to recognize attacks, and not
to prevent them as authentication protocols do. Moreover,
the IDS is unaware of the aftermaths of the detection and
requires to be installed alongside a “reactional” component
to be effective. In cyber-physical systems, such as the au-
tomotive one, this characteristic of IDSs makes them less
suitable to be implemented: among the proposed IDSs, many
of them do not ensure the absence of false positives (espe-
cially among those IDS which implement machine learning
algorithms). This prevents from being able to react by shut-
ting down the node which is sending the messaged flagged as
malicious, since it may lead to the unnecessary lowering of
safety features of the vehicle. Furthermore, multiple attacks
can often be implemented without surpassing the bounds



of preset rules (both frequency or data related), since such
rules have to be valid in many vehicular environments. Our
solution targets a specific property of CAN, the Transmit
Error Count (TEC) of the controller, which at the best of our
knowledge is rarely used as a countermeasure. The only IDS
that works at transceiver level and exploits the TEC, is the
one implemented in STINGER [2]. However, STINGER only
defends the ECU on which it is installed, while CopyCAN
watches over the whole bus. Moreover, CopyCAN does not
require any knowledge about the malicious ECU, making it
unfeasible for the attacker to fake or modify the counter even
knowing about the implementation of CopyCAN on the bus.

8 CONCLUSIONS AND FUTURE
WORKS

In this paper we proposed CopyCAN, a novel anti-spoofing
Intrusion Detection System for Controller Area Networks.
CopyCAN monitors the traffic on the bus and keeps track
the error counter of the protected nodes to detect when they
are disconnected from the network, therefore being able to
flag subsequent messages belonging to disconnected nodes
as attacks. We demonstrated the feasibility of CopyCAN by
implementing it in a proof-of-concept testbed and we tested
the hardware requirements to implement it in real-world
scenarios. Finally, we discussed the feasible reactions that
can be implemented once CopyCAN detects an attack.

The limitation regarding the CAN protocol fault confine-
ment rules comes from the impossibility to detect rule number
(4), as explained in Section 4.2. This may lead to the pro-
tected ECU switching to “bus off” state without CopyCAN
detecting it. However, this particular case does not invalid
the IDS since it is nor detectable nor reproducible by the
attacker: since the attacker himself can only monitor the bus
as CopyCAN does, he has at most the same information that
we have about the protected ECU. Also, our tests show that
rule (4) does not apply in the high majority of cases since
we always detected the ECU going “bus off”.

Future works will be focused on improving CopyCAN, by
analyzing possible solutions for its limitations, and on ex-
tending the same algorithm to CAN-FD. Also, we plan to
run tests on real-world automotive networks and microcon-
trollers by implementing CopyCAN on high-end real-time
devices and apply a formal verification framework to verify
our claims related to the low probability of false positives in
the detection.
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