Where’s Wally? How to Privately Discover your Friends on the
Internet

Panagiotis Papadopoulos
FORTH-ICS, Greece
panpap@ics.forth.gr

Elias Athanasopoulos
University of Cyprus, Cyprus
athanasopoulos.elias@cs.ucy.ac.cy

ABSTRACT

Internet friends who would like to connect with each other (e.g.,
VoIP, chat) use point-to-point communication applications such as
Skype or WhatsApp. Apart from providing the necessary communi-
cation channel, these applications also facilitate contact discovery,
where users upload their address-book and learn the network ad-
dress of their friends. Although handy, this discovery process comes
with a significant privacy cost: users are forced to reveal to the ser-
vice provider every person they are socially connected with, even if
they do not ever communicate with them through the app.

In this paper, we show that it is possible to implement a scalable
User Discovery service, without requiring any centralized entity
that users have to blindly trust. Specifically, we distribute the main-
tenance of the users’ contact information, and allow their friends
to query for it, just as they normally query the network for ma-
chine services. We implement our approach in PROUD: a distributed
privacy-preserving User Discovery service, which capitalizes on
DNS. The prevalence of DNS makes PROUD immediately applicable,
able to scale to millions of users. Preliminary evaluation shows that
PROUD provides competitive performance for all practical purposes,
imposing an overhead of less than 0.3 sec per operation.

CCS CONCEPTS

« Security and privacy — Pseudonymity, anonymity and un-
traceability; Privacy-preserving protocols; Privacy protections;

KEYWORDS
Mobile User Discovery, Privacy of Social Graph, Adress-book, DNS

ACM Reference Format:

Panagiotis Papadopoulos, Antonios A. Chariton, Elias Athanasopoulos,
and Evangelos P. Markatos. 2018. Where’s Wally? How to Privately Discover
your Friends on the Internet. In ASIA CCS ’18: 2018 ACM Asia Conference on
Computer and Communications Security, June 4-8, 2018, Incheon, Republic of
Korea. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3196494.
3196496

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASIA CCS ’18, June 4-8, 2018, Incheon, Republic of Korea

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5576-6/18/06. ... $15.00
https://doi.org/10.1145/3196494.3196496

Antonios A. Chariton
University of Crete, Greece
csd3235@csd.uoc.gr

Evangelos P. Markatos
FORTH-ICS, Greece
markatos@ics.forth.gr

1 INTRODUCTION

More and more users turn to Internet-based, real-time applications
(e.g., Messenger, WhatsApp, Viber, Skype, WeChat, Snapchat) for
their daily communication needs (VoIP, chat, file/image/video shar-
ing). Recent studies [33] predict that instant messaging (IM) alone
will account for 75% of the overall mobile communication traffic
by 2018. Other studies [3] show that the combined user base of the
top four mobile communication apps is larger than the combined
user base of the top four social networks, proving that these apps
have managed to transcend traditional social networks.

Today, each time a user opens her mobile app, the application con-
ducts an extensive User Discovery across all friends in her address-
book. Instantly, the user exposes her entire set of contacts to the
application provider, relinquishing the privacy of her social graph.
Hence, the provider learns which user is socially connected with
whom, even if they haven’t ever sent a single byte to each other.
What is more, there are cases where the revealed social graph does
not even belong to the mobile application. For example, in applica-
tions like Whatsapp (or Viber), the address-book uploaded during
User Discovery is not the one that contains the Whatsapp friends
of the users; it is her mobile phone address-book, which contains
people that she is socially connected with even if they have never
installed Whatsapp!

Building services which can provide in practice scalable User
Discovery, while respecting the user’s privacy, is challenging. Exist-
ing services are currently based on a centralized architecture for the
User Discovery process: a directory server (or group of servers) op-
erated by the application provider is responsible to store, maintain,
and respond to queries regarding its users’ network addresses. The
centralization of this information to a single provider, inevitably,
transforms it into a powerful “Big Brother”, who maintains, and
owns data, that include both user network addresses, and parts of
the global social graph. To make matters worse, there have been
incidents where this sensitive data were used beyond the control
of the user (i.e., sold to advertisers [25, 27, 29, 31, 34], handed over
to government agencies[39], or included, as an asset, in the com-
pany’s future buy-out [23, 32]). Even in the case of trusted services,
there exist bold examples, where the application’s bad design al-
lowed sensitive data to be leaked [15], enabling anyone interested
to find out, at any time, the current IP address, and consequently
the approximate geolocation of any user.

To address these drawbacks, the research community explored
if it is possible to build a User Discovery service, without revealing the
entire or part of the user’s social graph. Vuvuzela [36], for instance,

https://doi.org/10.1145/3196494.3196496
https://doi.org/10.1145/3196494.3196496
https://doi.org/10.1145/3196494.3196496

is a full-featured system for private messaging, resisting traffic
analysis attacks. However, it requires users to have their devices
constantly online, for sending no-op messages, even during idle
times. Vuvuzela is an all-or-nothing approach: you cannot use it
just for discovering your buddies. In this paper, we are primarily
interested in privacy-preserving User Discovery, which should be
neutral to the actual application. Apres [14], on the other hand,
attempts to solve the problem over Tor, which can cause additional
overhead, especially for mobile clients, and IoT. Other systems are
based on Private Information Retrieval (PIR) [6], requiring a large
amount of traffic (linear in some cases to the size of the database),
or a large amount of computation, or a combination of both, which
may limit the scalability of the system [2, 4].

In this work, we propose PROUD (PRivacy-preservation Of User
Discovery): a scalable system, which (i) enables users to control
their current network address without relying on any centralized
infrastructure, and additionally, (ii) allows them to find the network
addresses of their friends, without revealing their social associations.
PROUD is based on a core Internet service, available for everyone:
the Domain Name System (DNS). In PROUD, users who would like
to be discovered by their friends, place their network address in
(specially crafted and encrypted dead-drops) in the DNS. Users,
who would like to find the network address of their friends, retrieve
the dead drops from DNS, and, after appropriate decryption, they
(and only they) are able to find the current network address of their
friends. To summarize, we make the following contributions:

e We design PROUD: a system to enable users to discover their
contacts in a privacy-preserving fashion, without revealing who
is socially connected with whom. Following similar distributed
approaches [1, 12], PROUD does not require the user to blindly
trust any centralized entity.

e We implement PROUD as a standalone service by leveraging the
publicly accessible datastore of DNS, and we provide! an API
library to support any type of app. Our service is immediately
applicable, without needing maintenance by any single entity.

e To quantify the effectiveness of our approach, we develop a
simple IM application, which outsources its user discovery to
PROUD. The performance evaluation of our system shows that
it has minimal bandwidth requirements, and adds negligible
latency to the user experience (0.35 sec on average).

2 THREAT MODEL

Apart from sensitive data that a User Discovery service delivers
(i.e., users’ current network address), there are also metadata pro-
duced by its operations (i.e., Set/Get address), which reveal who
queries for whom. With such metadata, an application provider
can reconstruct the users’ social graph (i.e., who is socially associ-
ated with whom). This graph can be analyzed, together with other
leaked information [24, 26, 28], to infer interests or preferences
(political or religious beliefs, sexual preferences, etc.) [10], and be
sold to advertisers, even when they have not shared any related
information [21].

In this work, we assume an Internet service, which operates on a
community-based interaction. In such services, users are clustered
in communities. A typical example is a chat application, where

!Source Code: https:/github.com/panpap/PROUD

users form communities that exchange text messages. We addition-
ally assume an attacker who aims at discovering the community
structure (i.e., the social topology) by attacking the service. The at-
tacker can learn the community structure either by being in cahoots
with the centralized service, or by compromising the service and
leaking their data. PROUD addresses that by distributing the com-
munity information in two sets of non-colluding nodes: (i) the ones
responsible for setting the user discovery information (registration
servers), and (ii) the ones responsible for responding to queries for
this information (resolvers). Of course, the non-colluding nodes
assumption is not new in information-theoretic PIR (IT-PIR) [6],
and has been widely used in the area [4]. PROUD can preserve the
privacy of users as long as only one of the two above types of nodes
is compromised by the attacker: either registration servers or re-
solvers. Finally, we must note that the way a user will connect with
their friends after querying PROUD (e.g., through TLS connection,
Tor or physically by car), is beyond the scope of our paper.

3 SYSTEM OVERVIEW
3.1 Our approach: PROUD

The objective of PROUD is to enable users to advertise their current
network address to their friends only, without revealing their social
topology to any third party. In a nutshell, we design a system where
a user (which we call by convention Alice), creates a dead-drop
(namely friendship record) with her current contact point (e.g., IP
address), which her friend (Bob) can query.

Our system needs two separate types of servers: (a) a registra-
tion server, responsible for storing and maintaining the friendship
records of Alice, and (b) a recursive resolver, that handles the record
querying part. In order for our system to be immediately appli-
cable, we have to capitalize our system on an existing datastore.
This datastore must fulfill specific requirements that are necessary
for PROUD. These requirements include: (i) distribution of data
and infrastructure (i.e., servers), (ii) distribution of management by
allowing anyone interested to maintain their own servers, thus
participating in a wider coalition of nodes, and finally, (iii) provide
a high level of scalability.

Such a system could be a structured peer-to-peer system based on
DHT, e.g., Chord [35] or Kademlia [20]. The example of GNUnet’s
Name System (GNS) [37] proves that DHT-based systems can suc-
cessfully resolve keys to values. Similar translation of keys to values,
is already provided by the traditional DNS for years, making this
system an essential part of the Internet.

The key-value datastore of DNS. Although DNS was first de-
signed to map domain names to IP addresses, its success as a highly
scalable, lightweight, key-to-value mapping system, made it in-
dispensable to many Internet-related applications, and there are
several projects leveraging it to distribute their mappings (e.g., SSL
certificates [5, 9], server discovery [13], blacklist querying [17]).
The split design of DNS allows PROUD to perform over 2 separate
types of nodes, since each node may take one of the two roles below:
(1) Authoritative nameserver: a server responsible for a DNS zone
that provides responses to queries about records in this zone. In
PROUD, such nameservers are responsible of user registration,
and maintaining the friendship records.

(2) Recursive resolver: receives queries from the users’ devices,
contacts one or more authoritative nameservers inside the zone
hierarchy to locate a DNS record, before finally responding back
to the querying user. In PROUD, Bob can query any existing
DNS resolver to retrieve friendship records.

3.2 The PROUD protocol

For presentation purposes, throughout this section, we use a mobile
instant messenger (MIM) as our application example, which sup-
ports two types of directional friendships: followers and followees?.
In our scenario, both Alice and Bob have a user unique identifier
(UID) such as phone number, username, email. For simplicity’s sake,
they will be the only participants in our example. Bob is wishing to
follow his friend Alice, so he only queries the system for the address
of Alice®. Our protocol, supports semantics that can be simplified to
put(key, value) and get(key) commands and provides 3 main
operations: (i) create a new friendship, (ii) update with the device’s
current IP address, and (iii) discover the address of a friend in the
network. Beginning with a straw-man design, below, we describe
the basic functionalities of PROUD.

To bootstrap PROUD, we assume that (i) each user is able to

create and store locally her personal asymmetric key-pair and that
(ii) there is an out-of-band channel, through which (similar to other
systems in the literature [2, 4, 14, 36]) users can initially exchange in-
formation and public keys with their friends. The above asymmetric
key-pair is stored encrypted on the user’s device using symmetric
cryptography and a password as key that the user can memorize.
A. User registration. Every user of our system is able to follow
other users without any further requirements. In order to have
followers of her own, a user, through PROUD, acquires a DNS zone
in a domain*>. This zone is maintained by the authoritative name-
server, which is responsible for adding, updating, and publishing
information about this particular zone. Every zone includes multi-
ple records. Each record has an index token (a subdomain) and a
payload. In PROUD, every pair of friends (i.e., followee and follower)
has its own record (namely friendship record), which includes as
payload the current address of the followee.
B. New friendship. In every real-time MIM application (e.g.,
Viber, WhatsApp), whenever Bob wants to follow Alice, he just
chooses her from his contact-list, and the application sends her
a follow request. In PROUD, as soon as Alice accepts the follow
request, she creates a new friendship record in her authoritative
server (step 1 in Figure 1). This new friendship record represents
their directional friendship and contains the concatenated UIDs of
both Alice and Bob as an index token they both know, along with
her current network address. Hence, assuming that Alice’s DNS
zone is in the example.com domain and her current IP address is
IP4 =>10.1.0.52, the mapping of the created friendship record
will be the following:

key : (UIDB|UIDp).example.com
value : 10.1.0.52

2Bidirectional friendships are implemented in a similar way.

30f course, in practice, all parties participate in both registration and query
functions, while at the same time they have multiple followees and followers.

4The user does not need to register a new domain: we utilize free services (e.g.,
https://pointhq.com/), which provide DNS hosting and DNS zones.

SUser’s domain is transmitted together with the public key during bootstrapping.

Alice

&

Communication

! (6) Connection |
| Establishment |

Authoritative
serve|

Resolver

Figure 1: High level overview of PROUD. Alice place her friend-
ship records to an authoritative server, while Bob assigns his local
resolver to retrieve her friendship record from the DNS network.

As we can see, the friendship record, in this first straw-man pro-
posal, consists of two fields: (i) the index token, which contains
the concatenated UIDs of both follower and followee, and (ii) the
current IP address of the followee.

Of course Alice needs to ensure Bob that this particular friend-
ship record is created by her, therefore before uploading her new
friendship record to the authoritative server, she signs her friend-
ship record’s payload using her private key. In this way, she prevents
adversaries from impersonating her by creating rogue friendship
records, tricking Bob to miss-follow a malicious user instead of her.

Apart from providing authenticity to Bob, Alice also needs to
ensure that the information destined for Bob will be accessible
only by him. Thus, whenever she creates or updates a friendship
record, apart from signing the payload, she also encrypts it with
a fresh symmetric key that only Bob can access. This way, she
can guarantee the confidentiality of the query response, allowing
only Bob to decrypt the friendship record’s payload, and learn her
current network address. As a consequence, up to this point, the
friendship record of Alice and Bob is the following:

key : (UIDB|UIDy).example.com
value : Epypp (K), EK(IPA, T), Spriv, (H(Ex (IP4, T)))

where K is a fresh symmetric cryptographic key®, the functions E
and S are encryption and signing respectively, while H is the SHA
secure hash algorithm to ensure the integrity of the cyphertext. As
we see, the payload now is three-fold, since it includes: (i) the IP
address of Alice (IP4) together with a timestamp T encrypted with
the unique to this record version symmetric key K, (ii) the key K,
encrypted with Bob’s public key Pubp, and (iii) the SHA digest of
the ciphertext signed by Alice, so an adversary will not be able to
tamper, replay or alter the encrypted IP address. Note at this point,
that symmetric keys K are used only once. This way, they are not
needed to be stored in the user device. Symmetric encryption, at
this point, allows us to easily encrypt messages of arbitrary size.
Using UIDs in plaintext as an index token, obviously causes a se-
rious privacy leak. To avoid that, Alice could hash the concatenation
of both UIDs: (h(UIDg|UID 4)). Since Bob and Alice know the UID

%Depending on the cryptographic algorithm, K can be the key and the Initializa-
tion Vector (IV), or just the key.

vanilla m—
PROUD mmmm
_ 08
[s)
Q
£ 0.6
>
o
304
©
.
0
create update

Friendship record operations

Figure 2: Execution time per set-
friendship operation. There is an
additional delay of less than 0.35
sec on average per operation due
to cryptographic computations.

Execution time (sec)
P

1 10 100
Followers-list size

500

Figure 3: Followers-list update
time as a function of its size. It
takes less than 1.8 sec on average
to update as many as 200 friend-
ship records with the new IP.

Total volume of traffic (MBytes)
o
[$)]

10 100
Followers-list size

a1
o
[s)

Figure 4: Total traffic volume dur-
ing followers-list update. Even for
users with large list of followers,
updating all friendship records
takes less than 1 MByte.

PS
o
w
@

Consumed Bandwidth (KBps)
o
o

1 10 100
Followers-list Size

500

Figure 5: Total generated band-
width during followers-list update.
It takes less than 0.22 KBps on
average to simultaneously update
200 friendship records.

of each other, they can easily produce this index token and query
a DNS resolver for the record representing their particular friend-
ship. But again, using an unsalted hash means that anyone able to
enumerate both UIDs may reconstruct this index token, and hence
query for it. Obviously even by performing such query they will
not manage to learn Alice’s network address, since they could not
decrypt the response. Yet, they will be able to detect the existence of
an association between Alice and Bob. To remedy this, and provide
Perfect Forward Secrecy (PFS), in PROUD we periodically gener-
ate a new random index token through a pseudorandom number
generator (PRNG). To achieve this, upon friendship bootstrapping,
Alice and Bob feed their pseudorandom number generator with the
same seed SE4p’ and change this index token periodically (e.g.,
once per day). This way, it is guaranteed that (i) Alice and Bob are
the only parties able to reproduce and query this index token, and
(ii) that the record queries that Bob performed in the past cannot
be linked with the ones he performs now. The final format of the
friendship record that Alice creates in PROUD is the following:

rype s TXT
key : R(SEaB).example.com
value : Epypy (K), Ek(IPA, T), Spriv, (H(Ex (IPa, T)))

where R is the output of the PRNG function that uses SE 45 as input.
As one can observe, we use the TXT type of DNS records, which
allows us to add arbitrary data in our friendship records.

C. Friendship update. When Alice connects to the network, she
may roam across Access Points, from WiFi to a Mobile Network.
This makes her device pass to new network state, which from now
on we will call a new epoch. Each epoch of a user includes her move
to a new network address. At the beginning of each new epoch, the
user has to publish her new IP address immediately, in order for her
followers to remain updated. Hence, the device must monitor for IP
address changes and then promptly update all friendship records
in PROUD. To perform such network state update, Alice pushes
the updated friendship records to her authoritative nameserver. All
new recursive queries after that will fetch the updated friendship
records. Note that as described above, this record update may not
take place only every epoch but also periodically, as frequently as
the participants have decided to change the index token of their
friendship record.

"This shared seed is transmitted as a tuple during friendship bootstrapping to-
gether with public keys and the followee’s domain.

D. Friendship revocation. There may be cases, where Alice
needs to remove Bob from her followers. In such case, Alice just
removes from the authoritative nameserver the friendship record
that represents her friendship with Bob. In case she remains in the
same epoch, she also has to deny any future connections from Bob,
until she moves to a new epoch. After this point, Bob cannot obtain
the new IP address and thus he cannot relocate her in the network.
E. User discovery. In order for Bob to remain connected with
Alice, he needs to be up-to-date with her latest epoch before attempt-
ing to establish any connection. Therefore, he needs to periodically
query PROUD for Alice’s current network address. Hence, every
N seconds, Bob makes a simple query to his local resolver (steps
2-5 in Figure 1), asking for the record with the index token that
represents his friendship with Alice. As soon as he retrieves the
response, he uses (i) his private key to recover the key and decrypt
the payload, and (ii) Alice’s public key to verify that this payload
was indeed created by her. In case the timestamp is obsolete he
immediately discards the record, otherwise he can recover the IP
address and open a communication channel with Alice.

4 SYSTEM EVALUATION

We implemented PROUD as a library to facilitate easy integration
in any application. The library is written in Java, the cryptographic
module uses the Bouncy Castle’s Crypto APIs [16]. For authentica-
tion, we use RSA asymmetric cryptography with PKCS1Padding
and 1024-bit keys. For encryption, we use AES symmetric cryptog-
raphy with PKCS5Padding and 256-bit keys. AES in CBC mode is
also used for encrypting the local stored lists and keypairs. Each
IV is also encrypted with AES-ECB mode in one block. Addition-
ally, we use SHA256 for integrity verification and SHA2-PRNG for
our cryptographically secure pseudorandom number generation
(CSPRNG). For the communication with the authoritative server,
we used the dnsjava library [38]. For our experiments, we imple-
mented a simple IM application which outsources its User Discov-
ery functionality to PROUD. For our measurements, we used a PC
equipped with an Intel Core 17-4790 Processor, 3.60GHz with 8MB
L2 cache, 8GB RAM, and an Intel 82567 1GbE network interface.

Experimental Evaluation: First, we study the execution time
of set-friendship operations. Specifically, we measure the execution
time of friendship record create and update requests in PROUD.
In addition, we build a simple DDNS client (vanilla case) in Java
to compare our results with the vanilla DNS record operations.

s 0.8
© 0.7
~ 0.6
£05
2 0.4
203
202
3 0.1
o
G SR D0 5T 5, %, s % R, %
A 2 e R,
< g 49’7/;/. o %G
%
Location

Figure 6: Querying latency from different geolocations when the
authoritative server is located in Europe. In most of the cases the
response time is less than 1 sec.

We repeat each operation 100 times and in Figure 2 we report the
average values. As we can see, the average latency of our service
reaches 0.7 sec for a new friendship operation and 0.59 sec for an
update friendship operation. On the other hand, in the vanilla case,
the same record operations cost 0.37 sec and 0.36 sec respectively.
This practically insignificant 0.3 sec latency imposed in each oper-
ation of our system is caused by the cryptographic computations.
A user, to allow their friends to continue following them uninter-
ruptedly when they move inside a network, has to update all of
their friendship records as soon as they change network address.
In our prototype, we use threads to perform such multiple update
operations in parallel and achieve the lowest possible latency. In
Figure 3, we present the time it takes for a user to update all of
their friendship records as a function of the number of followers
in the user’s followers-list. As we see, even for a large number of
followers (i.e., 500 followers), the update time for the entire list is
reasonably low, less than 3.5 sec on average.

Next, we quantify the amount of traffic the most heavy-load
operation of PROUD: the update operation, generates as a factor
of the number of followers. To do so, we trigger a new epoch
on the user’s device and we measure the bytes uploaded to the
authoritative server. As we can see in Figure 4, there is a linear
increase generating a traffic of up to 0.36 MBytes when a list of 200
followers gets updated. This volume overhead is reasonably low
even for cellular networks. In addtion, Figure 5 shows the average
bandwidth consumption as a function of the followers-list size.
We notice that even in the case of 500 followers the bandwidth
consumption needed for updating all friendship records is less than
0.32 KBps on average. Evidently, the total bandwidth consumed
during the update operation is not really an issue, even for users
with lots of followers using cellular network connections.

In Figure 6, we measure the response time of queries in PROUD
from different geographic locations, when the authoritative server is
located in Europe. We notice that even for the most remote location,
the Fiji islands, the response time was as low as 0.7 sec. According
to Ratatype [30], users can produce on average 41.4 words (207
keystrokes) per minute when chatting, and according to [18, 40] an
IM transmission contains approximately 29 characters on average.
This means that a user needs more than 2 sec to type even a short
message of 10 characters. This window is more than enough for
PROUD to retrieve the friend’s new network address.

TTL reduces the load of servers but in PROUD, it may also create
service hiccups: very low TTL values can cause relatively high

load on the authoritative server, but very high TTL values may let
the resolver respond with an obsolete friendship record of Alice
causing a service hiccup to Bob’s application. In PROUD, we follow
an adaptive approach tuning the TTL according to Alice’s moving
frequency patterns. Particularly, we vary the TTL of her records
based on the frequency of new epoch production. Hence, the more
frequently Alice moves to new epochs the lower the TTL will be
assigned in her next record updates. In a similar way, the TTL of a
sporadically moving Alice are increased reducing the number of
queries at the authoritative server, letting the resolvers respond to
followers’ periodic queries from their cache.

5 RELATED WORK

Ben Laurie in [14] proposes Apres: a system to allow Alice know
when Bob is online along with his network address without let-
ting anyone else know about it. Unlike PROUD, Apres assumes a
dedicated server working as a hub to store and forward messages
and requires the use of Tor in order to access the server anony-
mously. DP5 [4] aims to provide privacy of presence to real-time
communications. Unlike PROUD, it requires special infrastructure
consisting of a registration server and a set of PIR servers. DP5
imposes high network overhead: users, during their communication
with PIR servers, need to download or upload their full friends-list
for each operation. Moreover, DP5 is less scalable than PROUD: it
requires an increasing management complexity for the additional
PIR servers, considering the ever-increasing number of users.

Vuvuzela [36] is a system for private communication under
heavy surveillance. It uses a dedicated infrastructure containing
a Tor-like chain of servers which utilize onions, along with cover
traffic to conceal the users message exchanges. Although Vuvuzela
is able to adequately preserve the privacy of the user’s social graph,
its a heavyweight approach that requires the users to have their
devices constantly online to send no-op messages even during idle
times of the user. This results to a large bandwidth requirement per
user (around 12 KB/sec per round or 12 GB/sec in total).

Pung [2] provides private communication based on a computa-
tional PIR model. Similar to Vuvuzela, Pung, assumes an untrusted
ISP, however it further assumes all of its servers as untrusted. To
improve its performance, Pung uses a probabilistic multi-retrieval
scheme, which allows its server to efficiently process multiple re-
trievals from the same user. Although this scheme allows Pung to
reduce computational costs by up to 11x, its applicability is still
questionable since the network costs are significantly increased.

Signal [19] is a commercial approach, which protects the privacy
of the user’s address-book during contact discovery by leveraging
architectural support, and specifically Intel’s Software Guard Ex-
tensions (SGX). Technically, the user performs remote attestation
to query a directory service which runs in a trusted enclave at the
remote server. The mayor drawback of the proposed approach is
the current limited support of SGX enclaves in mobile devices.

6 DISCUSSION AND CONCLUSION

Colluding nodes. There is a case, where the infrastructure PROUD
leverages may be hostile with an adversary compromising both
parts of our system (authoritative servers and DNS resolvers). Then,
these nodes may collude and link (a) record updates of authoritative

server and (b) queries received by the resolver, thus inferring who
queries whose record. An adversary able to compromise such large
parts of the global DNS network is considered very powerful (one
may also say unrealistic). However, even in this case, the powerful
adversary will be able to correlate only individual user associations
and not the entire social graph of the querying user. In particular,
he will be able to reveal only the user’s associations with friends
using the specific compromised authoritative server.

Users behind NAT and IPv6. Most distributed applications
nowadays suffer when end-nodes are not in the same address realm.
This situation affects all users behind NAT. However, in the near
future, with the rise of IPv6, every device will have its own network
address without needing any such layer. Current metrics put IPv6
at a minimum of 20% global adoption [8], and local uses (within a
country) to over 50%. Additionally, IPv6 provides Privacy Exten-
sions [22], which enables devices to frequently change network
addresses within a day to preserve their privacy. It is apparent, that
with such a functionality in place, the necessity for efficient privacy-
preserving User Discovery becomes crucial. Of course, currently
there are several practices for NAT penetration including the use
of a trusted rendezvous point [11] or hole punching [7]. Given the
short remaining life of NAT, this issue is beyond the User Discovery
procedure and thus beyond the scope of this paper.

Conclusion: This paper proposes PROUD: a scalable privacy-
preserving user discovery service able to protect both (i) data (user’s
current IP address) and (ii) metadata (who queries for whom). In
PROUD, we decouple the user discovery from the application and
we build a standalone service, which leverages the existing network
DNS. This way, our approach is scalable and immediately applicable.
Furthermore, in PROUD, we allow the users delegate trust among
each other without relying on any centralized infrastructure that
has to be blindly trusted. We implemented a prototype by building
an IM on top of PROUD. Results of our evaluation show that even
for very large contact lists, it has minimal bandwidth requirements
and imposes practically negligible latency to the user experience.

Acknowledgments: The research leading to these results has
received funding from European Union’s Marie Sklodowska-Curie
grant agreement No 690972. The paper reflects only the authors’
view and the Agency and the Commission are not responsible for
any use that may be made of the information it contains.

REFERENCES

[1] M. Ali, R. Shea, J. Nelson, and M. J. Freedman. Blockstack: A new internet for
decentralized applications. Technical Report, 2017.

[2] S. Angel and S. Setty. Unobservable communication over fully untrusted in-

frastructure. In OSDI'16.

BI Intelligence. Messaging apps are now bigger than social networks.

http://www.businessinsider.com/the-messaging-app-report-2015-11, 2016.

[4] N. Borisov, G. Danezis, and I. Goldberg. Dp5: A private presence service. In
PET’15.

[5] A.A. Chariton, E. Degkleri, P. Papadopoulos, P. Ilia, and E. P. Markatos. Dcsp:
Performant certificate revocation a dns-based approach. In EuroSec ’16.

[6] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information re-

trieval. In FOCS’95, 1995.

B. Ford, P. Srisuresh, and D. Kegel. Peer-to-peer communication across net-

work address translators. In ATC ’05.

[3

=

[7

—

[8] Google. Google ipv6 statistics. https://www.google.com/intl/en/ipv6/statistics.html.

[9] P. Hoffman and J. Schlyter. The DNS-based authentication of

named entities (DANE) trans&:)ort layer security (TLS) protocol: TLSA.
https://tools.ietf. org/html/rfcéé 8, 2012:

[10] C. Jernigan and B. F. Mistree. Gaydar: Facebook friendships expose sexual
orientation. First Monday, 14(10), 2009.

[11] T.Kato, N. Ishikawa, H. Sumino, J. Hjelm, Y. Yu, and S. Murakami. A platform
and applications for mobile peer-to-peer communications. In MobEA 03, 2003.

[12] J. Kopstein. The mission to decentralize the internet.
http://www.newyorker.com/tech/elements/the-mission-to-decentralize-
the-internet, 2013.

[13] M. Krochmal and S. Cheshire. Dns-based service discovery. 2013.

[14] B.Laurie. Apres-a system for anonymous presence. Technical Report.

[15] S. Le Blond, C. Zhang, A. Legout, K. Ross, and W. Dabbous. I know where
you are and what you are sharing: Exploiting p2p communications to invade
users’ privacy. In IMC ’11.

[16] Legion of the Bouncy Castle Inc.
http://www.bouncycastle.org/.

[17] J.R. Levine. Dns based blacklists and whitelists. 2010.

[18] R. Ling and N. S. Baron. Text messaging and im linguistic comparison of
american college data. Journal of Language and Social Psychology, 2007.

[19] M. Marlinspike. Technology preview: Private contact discovery for signal.
https://signal.org/blog/private-contact-discovery/, 2017.

[20] P. Maymounkov and D. Maziéres. Kademlia: A peer-to-peer information sys-
tem based on the xor metric. In IPTPS’01.

[21] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel. You are who you
know: Inferring user profiles in online social networks. In WSDM 10, 2010.

[22] T.Narten, R. Draves, and S. Krishnan. Privacy extensions for stateless address
autoconfiguration in ipvé. 2007.

[23] P. Olson. Facebook closes 19 billion whatsapp deal
www.forbes.com/sites/parmyolson/2014/10/06/facebook-closes-19-billion-
whatsapp-deal.

[24] E.P. Papadopoulos, M. Diamantaris, P. Papadopoulos, T. Petsas, S. Ioannidis,
and E. P. Markatos. The long-standing privacy debate: Mobile websites vs
mobile apps. In WWW’17.

[25] P. Papadopoulos, N. Kourtellis, and E. P. Markatos. The cost of digital adver-
tisement: Comparing user and advertiser views. In WWW’18.

[26] P. Papadopoulos, N. Kourtellis, and E. P. Markatos. Exclusive: How the
(synced) cookie monster breached my encrypted vpn session. In Eurosec’18.

[27] P. Papadopoulos, N. Kourtellis, P. R. Rodriguez, and N. Laoutaris. If you are
not paying for it, you are the product: How much do advertisers pay to reach
you? In IMC ’17.

[28] P. Papadopoulos, A. Papadogiannakis, M. Polychronakis, A. Zarras, T. Holz,
and E. P. Markatos. K-subscription: Privacy-preserving microblogging brows-
ing through obfuscation. In ACSAC ’13.

[29] A. Peterson. Bankrupt radioshack wants to sell off
user data. but the bigger risk is if a facebook or google
goes bust. https://www.washingtonpost.com/news/the-
switch/wp/2015/03/26/bankrupt-radioshack-wants-to-sell-off-user-data-
but-the-bigger-risk-is-if-a-facebook-or-google-goes-bust/, 2015.

[30] Ratatype. Average typing speed
http://www.ratatype.com/learn/average-typing-speed/.

[31] M. Richtel. Ftc. moves to halt sale of database at toysmart.
http://www.nytimes.com/2000/07/11/business/ftc-moves-to-halt-sale-of-
database-at-toysmart.html, 2000.

[32] G. M. Robert-Jan Bartunek, Philip Blenkinsop. Eu fines facebook 110 million
euros over whatsapp deal. http://www.reuters.com/article/us-eu-facebook-
antitrust-idUSKCN18EOLA, 2017.

[33] S.Rowlands. Mobile messaging: War of the words. Whitepaper, 2014.

[34] D. Solove. Going bankrupt with your personal data.
https://www.teachprivacy.com/going-bankrupt-with-your-personal-data/,
2015.

[35] I Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord:
A scalable peer-to-peer lookup service for internet applications. In SIG-
COMM’01.

[36] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zeldovich. Vuvuzela: Scalable
private messaging resistant to traffic analysis. In SOSP’15.

[37] M.Wachs, M. Schanzenbach, and C. Grothoff. A censorship-resistant, privacy-
enhancing and fully decentralized name system. In CANS’14.

[38] B. Wellington. The dnsjava project. http://www.xbill.org/dnsjava/, 2002.

[39] J. I. Wong. Here’s how often apple, google, and others handed over data
when the us government asked for it. https://qz.com/620423/heres-how-
often-apple-google-and-others-handed-over-data-when-the-us-government-
asked-for-it/, 2016.

[40] Z. Xiao, L. Guo, and J. Tracey. Understanding instant messaging traffic char-
acteristics. In ICDCS ’07.

Bouncy castle crypto apis.

infographic.

	Abstract
	1 Introduction
	2 Threat model
	3 System Overview
	3.1 Our approach: PROUD
	3.2 The PROUD protocol

	4 System Evaluation
	5 Related Work
	6 Discussion and Conclusion
	References

