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Abstract Static binary analysis techniques are widely used to reconstruct
the behavior and discover vulnerabilities in software when source code
is not available. To avoid errors due to mis-interpreting data as machine
instructions (or vice-versa), disassemblers and static analysis tools must
precisely infer the boundaries between code and data. However, this infor-
mation is often not readily available. Worse, compilers may embed small
chunks of data inside the code section. Most state of the art approaches
to separate code and data are rooted on recursive traversal disassembly,
with severe limitations when dealing with indirect control instructions. We
propose ELISA, a technique to separate code from data and ease the static
analysis of executable files. ELISA leverages supervised sequential learning
techniques to locate the code section(s) boundaries of header-less binary
files, and to predict the instruction boundaries inside the identified code
section. As a preliminary step, if the Instruction Set Architecture (ISA)
of the binary is unknown, ELISA leverages a logistic regression model to
identify the correct ISA from the file content. We provide a comprehensive
evaluation on a dataset of executables compiled for different ISAs, and we
show that our method is capable to identify code sections with a byte-level
accuracy (F1 score) ranging from 98.13% to over 99.9% depending on the
ISA. Fine-grained separation of code from embedded data on x86, x86-64
and ARM executables is accomplished with an accuracy of over 99.9%.

1 Introduction

Research in binary static analysis—i.e., techniques to statically analyze programs
where the source code is not available—is a thriving field, with many tools and
techniques widely available to help the analyst being actively researched and
developed. They range from disassemblers and decompilers, to complex analysis
frameworks [1,2] that combine static analysis with other techniques, primarily
symbolic execution [3,4], fuzzing [5,6], or both [7]. Binary analysis techniques are
useful in many domains: For example, discovering vulnerabilities [8], understanding
and reconstructing the behavior of a program, as well as modifying legacy software
when the source code is lost (e.g., to apply security [9] or functionality patches).
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A pre-requisite for performing static binary analysis is to precisely reconstruct
the program control flow graph and disassemble the machine instructions from
the executable file. Unfortunately, perfect disassembly is undecidable [10]: Indeed,
modern disassemblers often fall short on real world files. One of the most relevant
obstacles to achieve a correct disassembly is to separate machine instructions from
data and metadata. Executable files are structured in sections, with some sections
primarily containing code (e.g., .text) and some other primarily containing data
such as strings, large constants, jump tables (e.g., .data, .rodata). The header
of standard file formats (e.g., ELF, PE, Mach-O) identifies the sections’ offset and
properties. Unfortunately, especially when analyzing the firmware of embedded
devices, executables sometimes come in a “binary-blob” format that lack section
information. Even if the program comes with metadata identifying the code
sections, compiler optimizations make static analysis harder [11]: Often, compilers
embed small chunks of data in the instruction stream. Microsoft Visual Studio
includes data and padding bytes between instructions when producing x86 and
x86-64 code [12], and ARM code often contains jump tables and large constants
embedded in the instruction stream [13]. This “inline” data, if wrongly identified
as an instruction (or vice-versa), leads to an erroneous analysis.

Motivated by these challenges, we tackle the problem of separating instructions
from data in a binary program (code discovery problem). We divide the prob-
lem into two separate tasks: First, we identify the boundaries of the executable
sections; Second, we perform fine-grained identification of non-code chunks em-
bedded inside executable sections. Separating such problems allows to leverage
more precise models, as well as to provide the analyst with the information on
the code sections separately from the embedded data information. Our method-
ology is targeted at reverse engineering (mostly benign) software, rather than at
thwarting advanced code obfuscation methodologies such as those found when
analyzing some advanced malware. Thus, we are aware that it may be possible to
adversarially manipulate the binary program in order to make our methodology
output wrong results; we do not explicitly deal with this use case.

Our methodology is based on supervised learning techniques, is completely
automated, does not require architecture-specific signatures1, and is scalable to
any number of architectures by appropriately extending the training set. Finally,
as our technique trains a different model for each architecture to precisely learn the
features of the instruction set, we introduce a preliminary step to automatically
identify the target ISA of a raw binary file.
Contributions. In this paper, we present the following contributions:

1. We propose ELISA, a technique, based on sequential learning, to separate
instructions and data in a binary executable; ELISA is able to identify the code
sections and, subsequently, to draw out data embedded between instructions;

2. We evaluate our technique on a set of real applications compiled for different
processor architectures, precisely collecting the ground truth by leveraging
compiler-inserted debug symbols;

1 While it is possible to integrate our methodology with ISA-dependent heuristics, we
show that our methodology achieves good results without ISA-specific knowledge.



3. We complement ELISA with a technique for automatic ISA identification,
extending a state-of-the-art approach [14] with (optional) multi-byte features,
and evaluating it on a large set of executable binaries.

2 Design of ELISA

The goal of ELISA is to solve the code discovery problem: Given an arbitrary
sequence of bytes containing machine instructions and data, without any metadata
(e.g., debug symbols), it separates the bytes containing executable instructions
from the ones containing data. We start by observing that the majority of exe-
cutable programs are divided, as a first approximation, into multiple sections : one
or more containing machine code, and one or more containing data. We follow a
two-step approach: First, we identify the boundaries of code sections, i.e., sections
mostly composed of machine instructions; then, we identify the chunks of data
embedded into code sections. As we use supervised machine learning models,
ELISA is signature-less: Its set of supported architectures can be extended by
extending the training set, without developing architecture-specific heuristics. The
two-step approach gives the analyst both a coarse grained information about the
section boundaries, as well as a byte-level, fine grained classification.
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Figure 1. Overview of ELISA.

Figure 1 summarizes our approach. First of all, if the ISA of the binary
executable file to be analyzed is unknown, we automatically detect it using a
logistic regression classifier. Once the ISA is known, we use a Conditional Random
Field (CRF) [15], a supervised machine learning model based on probabilistic
sequential learning, to classify each byte of an unknown file as belonging to the
code section or not. We train a different CRF model for each of the supported
architectures. Then, we perform a post-processing step to eliminate small blocks



of code or data by merging them with the surrounding region in order to eliminate
the noise in the prediction output. Finally, we use a second set of per-architecture
CRFs to classify each byte of the identified code sections as either part of a
machine instruction or as data.

2.1 ISA Identification

Whenever the ISA of the analyzed file is unknown, ELISA attempts to automat-
ically identify it, including the correct endianness if the architecture supports
multiple endianness variants. We adopt a signature-less technique based on super-
vised machine learning, extending the model by Clemens [14]. We use a logistic
regression model to classify a file among one of the supported ISAs.
Feature Extraction. Given an executable binary file, we extract an appropriate
feature vector. Since we have no information about the file content or structure,
we select features stemming from the frequency distribution of bytes or selected
multi-byte patterns (using all the byte n-grams would lead to 256n features).

Starting from the assumption that executables compiled for different CPU
architectures have different Byte Frequency Distributions (BFDs), we obtain the
BFD of each file, computing the frequencies of the 256 possible byte values. The
frequency of a byte having value i is defined as:

fi =
count(i)

P255
i=0 count(i)

8i 2 [0, 255]

where count(i) counts how many times i appears in the executable.
Some architectures, such as mips and mipsel, share the same BFD as they

differ only by their endianness. To properly recognize the endianness, we include in
our set of features the four two-byte patterns used for this purpose in Clemens [14],
i.e., the byte bi-grams 0x0001, 0x0100, 0xfffe, 0xfeff. Furthermore, we extend
the feature set with the frequency of selected byte patterns known to characterize
certain architectures, encoded as regular expressions to obtain a fair trade-off
between expressive power and matching speed. We include the patterns of known
function prologues and epilogues from the archinfo project part of angr, a
binary analysis framework [3]. While this latter set of features is a signature and
requires effort to adapt to further architectures, we remark that it is completely
optional and allows ELISA to perform better in discriminating between similar
architectures. We normalize the number of multi-byte pattern matches by the file
size, computing the multi-byte features as:

fpattern =
#matches(pattern, file)

len(file)

Multi-Class Logistic Regression. To create a model able to label a sample
among K supported architectures (classes), we train a different logistic regression
model for each class k 2 {1, . . . ,K}, and use the one-vs-the-rest strategy to obtain
a K-class classifier. We use logistic regression models with L1 regularization: given



a feature matrix X and a vector of labels y(k) (where y(k)i = 1 if the sample i
belongs to the class k, 0 otherwise), we learn the vector of parameters w(k) for
the class k by solving the following minimization problem:

min
w(k)

���w(k)
���
1
+ C

nX

i=1

log
⇣
exp

⇣
�y(k)i

⇣
XT

i w
(k) + w(k)

0

⌘⌘
+ 1

⌘

The C parameter is the inverse of the regularization strength: lower values of C
assign more importance to the regularization term than to the logistic loss (second
term), penalizing complex models. The L1 regularization can generate compact
models by setting to zero the coefficients in w corresponding to less relevant
features; the model performs feature selection as part of the learning phase, as the
learnt model parameters are an estimate of the importance of each feature. For
each sample with feature vector X, the set of logistic regression models output a
confidence score for each class k, i.e, an estimate of the probability P (k|X) that
the sample belongs to the class k; thus, the predicted class is the one with the
highest confidence score k⇤ = argmaxk2{1...K} P (k|X).

2.2 Code Section Identification

We formulate the code section identification problem as a classification problem:
given a sequence of bytes (b1, b2, . . . , bn), bi 2 [0, 255], we want to predict a
sequence of binary labels (y1, y2, . . . , yn), yi 2 {0, 1}, where yi = 1 if the byte
xi is part of a code section, yi = 0 otherwise. To train the classifier, we extract
the feature matrix and the label vector for each sample in the labeled dataset; in
order to model ISA-specific patterns, we learn a Conditional Random Field (CRF)
for each ISA. When classifying an unknown file, we extract the feature matrix,
fit the model, and run a post-processing algorithm to remove the noise given by
small sequences of code inside the data section (or vice-versa). Doing so, we end
up with contiguous, relatively large sequences of code or data.
Feature Extraction. Given a N -byte file, we compute the one-hot encoding
of each byte. For example, if bi = 0x04, we extract xi = (0, 0, 0, 0, 1, 0, 0, . . . , 0),
a binary vector having length 256. We choose one-hot encoding, a widespread
technique to transform numeric features in a set of categorical features, as we
are interested in distinguishing one byte value vs. all the others, rather than in
the numeric values of the bytes. The files to classify contain both code and data,
so we do not attempt to extract instruction-level features using a disassembler.
We then consider, for each byte, the one-hot encodings of its m preceding bytes
(lookbehind) and n following bytes (lookahead) to account for context-sensitivity,
obtaining a N ⇥ 256 · (n+m+ 1) feature matrix for each file2

Conditional Random Fields. CRFs [15] are a class of statistical and sequence
modeling methods to segment and label graph-structured data (structured pre-
diction): Instead of separately classifying each item in a sequence, they consider
2 The parameters m and n belong to the model and can be appropriately tuned; for

example, in our evaluation we used grid search.



the structure of the problem (i.e., the classification of a sample takes into account
also the “neighboring” samples). Thanks to this feature, this model is suitable for
separating code from data: Indeed, a byte with a certain value can be interpreted
as part of a valid instruction or as data, according to its context.

In a CRF, the dependencies between random variables are modeled as a graph
where each node is a random variable; each variable is conditionally dependent on
all its graph neighbors, and conditionally independent from all the other variables.
In this form, CRFs can be seen as a generalization of a Hidden Markov Model
where the distribution of the observation are not modeled, relaxing independence
assumptions.

Let X be a sequence of observations (i.e., the bytes of the binary file), and Y
a set of random variables over the corresponding labels (i.e., code or data). We
assume that some variables in Y are conditionally dependent. A CRF is defined
as follows [15]:

Definition 1 (Conditional Random Field). Let G = (V,E) be a graph such
that Y = (Yv)v2V , so that Y is indexed by the vertices of G. Then (X,Y) is a
conditional random field when, conditioned on X, the random variables Yv obey
the Markov property with respect to the graph: P (Yv | X,Yw, w 6= v) = P (Yv |
X,Yw, w ⇠ v), where w ⇠ v means that w and v are neighbors in G.

We model the code discovery problem using linear-chain CRFs, a particular
case of CRFs where the graph is reduced to an undirected linear sequence: The
variable associated with each element (Yv) is conditionally dependent only on the
observations and on the classification of the previous (Yv�1) and the following
(Yv+1) element. Figure 2 depicts the structure of a linear-chain CRF.

Yi�1 Yi Yi+1

Xi�1 Xi Xi+1

Figure 2. Graphical structure of a linear-chain CRF [15].

In a general CRF, vertices i 2 V and edges (i, j) 2 E are associated with a
set of feature functions, respectively fh(X,Yi) and gk(X,Yi,Yj). The feature
functions account for features drawn from the observations that can influence
the likelihood of the values of the labels. We define a set of feature functions
to associate to each vertex Yi the feature vector of the associated observation
(i.e., one-hot encoded value, lookahead and lookbehind of the byte bi), and asso-
ciate the constant 1 to each edge.

Feature functions are used to compute the conditional probabilities. To do so,
we associate unary and binary potential functions � respectively to each vertex i



and to each edge (i, j) in G. The Markov network model is log-linear, so we can
compute the network potentials as the exponential of the weighted sum of the
features on the vertices and on the edges:

�i(X,Yi) = exp

"
X

h

whfh(X,Yi)

#
8 i 2 V

�i,j(X,Yi,Yj) = exp

"
X

k

wkgk(X,Yi,Yj)

#
8 (i, j) 2 E

where the weights wi are the parameters learned by the model. Finally, we compute
the conditional probability distributions as:

P (Y | X) /
Y

i2V

�i(X,Yi)
Y

(i,j)2E

�i,j(X,Yi,Yj)

Learning CRFs. To learn the parameters of the CRF, we use Structural Support
Vector Machines (SSVMs), i.e., soft-margin SVMs with a loss function designed for
multi-label classification. The primal problem formulation for soft-margin SSVMs
is [16]:

min
1

2
kwk2 + C

X

x

⇠x

s.t. w>�fx(y) � �tx(y)� ⇠x 8x,y
where:

– w is the vector of weights learned by the model;
– t(x) is the predicted y for the input sequence x;
– f(x,y) are the features or basis functions;
– �fx(y) = f(x, t(x))� f(x,y);
– �tx(y) =

Pl
i=1 I(yi 6= (t(x))i) is the number of wrong labels predicted by

the model for the input x;
– ⇠x is a slack variable to allow the violation of some constraints when the data

is not linearly separable;
– C is the inverse of the regularization strength.

To efficiently solve this optimization problem, we use the Block-Coordinate
Frank-Wolfe algorithm [17], an iterative optimization algorithm. Asymptotically,
it converges to the solution; we stop it after a fixed maximum number of iterations
or when the loss function becomes smaller than a set threshold.
Post-processing. To improve the ability of the sequential classifier to identify
code sections, after classifying each byte of a file using our trained CRF, we
iteratively remove the smallest contiguous sequence of predictions of code or data
(chunk), merging it respectively with the surrounding data or code. We implement
this phase as shown in Algorithm 1, which takes two parameters: min_sections ,
accounting for the minimum number of sections to keep, and cuto↵ , the maximum
size of any chunk that can be eliminated (as a fraction of the largest chunk).



Algorithm 1 Post-processing algorithm
Require: C: list of chunks (start, end, tag), min_sections, cuto↵

loop
M  maxc2C length(c) {size of largest chunk}
cmin  argminc2C length(c) {smallest chunk}
if |C| > min_sections and length(cmin) < cuto↵ ·M then

invert tag of cmin and merge with surrounding chunks
C  updated list of chunks

else
return C

end if
end loop

2.3 Fine-grained Code Discovery

Once the code section is identified, we classify its bytes as code or non-code.
Similarly to the procedure for identifying code sections, we train a per-ISA Con-
ditional Random Field (CRF) on a labeled dataset, and we use this model to
classify previously unseen code sections. We do not apply the post-processing
algorithm since we are interested in identifying small chunks of data in the code.

Feature Extraction. We train the model with the same feature matrix used for
the code section identification step. We consider the one-hot encoding value of
each byte, with m lookbehind bytes and n lookahead bytes.

We observe that, for some architectures, it is possible to improve the perfor-
mance of the classifier by augmenting the feature set with (optional) architecture-
specific heuristics that allow the classifier to solve a simpler problem. For example,
in case of fixed-length instruction architecture, such as ARM, we can leverage
the fact that every instruction and data block starts an address multiple of 4
bytes. In this case, the problem of code discovery can be stated as follows: classify
each 4-byte word of each code section as a machine code word or data. Given
this property, we can also extract (ARM-specific) instruction-level features: Using
a linear disassembler, we interpret each 4-byte word as an instruction, and we
compute the feature matrix considering, for each 4-byte word, both the opcode
returned by the disassembler (we consider a special value if the word could not
be interpreted as a valid ARM opcode), and the value of the first byte of each
word. We apply one-hot encoding to these features and generate the lookahead
and lookbehind as done for the generic feature matrix. In this case, the trained
model labels each word, not byte, as code or data.

In the remainder of this paper, we adopt the general feature vector for x86 and
x86-64 architectures, and the specialized feature vector for the ARM architecture.
Note that we do not consider the case in which Thumb code (which is 2-byte
aligned) is also present; that problem is specifically addressed by Chen et al [13].



3 Experimental Evaluation

We separately evaluate the three stages of ELISA: architecture identification, code
section identification, and fine-grained code discovery. We implemented ELISA in
Python, using the machine learning algorithms from the scikit-learn library.
We implemented the classifiers based on linear-chain Conditional Random Fields
using pystruct [18], an open-source structured learning library featuring CRF-like
models with structural SVM learners (SSVMs). Given the large size of the dataset
and the memory space required by one-hot encoding, we use the compressed
sparse row representation [19] for the feature matrices.

3.1 Architecture Identification

Evaluation on Code Sections. We obtained the dataset used by Clemens [14],
containing 16,642 executable files for 20 architectures; after removing empty and
duplicate files, we obtained 15,084 samples. The dataset contains only a few
samples for AVR and CUDA (292 and 20 respectively): As this may influence the
result, we extend the dataset by compiling the Arduino examples [20] for AVR,
and the NVIDIA CUDA 8.0 samples [21], and extract the code sections from the
resulting ELF files. To test our tool in a worst-case scenario, we also selected 20
binaries from the challenges proposed in the 2017 DEF CON CTF contest, and
compiled them for cLEMENCy [22], a middle-endian architecture purposefully
designed to break assumptions underlying binary analysis tools: Our model is
based on the frequency of 8-bit bytes, while cLEMENCy uses 9-bit bytes.

Table 1 reports the results of our classifier on this dataset. First, to replicate
the results by Clemens, we classify the dataset, without the additional samples,
considering only the original features, i.e., Byte Frequency Distribution and the 4
bi-grams for endianness detection (Original). Then, we include the additional AVR,
CUDA and cLEMENCy samples, and we use the complete feature matrix, includ-
ing the frequencies of function prologue and epilogue patterns (Complete). In both
cases, we use 5-fold cross-validation to evaluate the classifier performance. For
comparison, the last column of the table reports the F-measures from Clemens [14].
The detailed precision, recall and Area Under the Curve (AUC) figures are pro-
vided for the complete feature matrix only. We obtain a global accuracy of 99.8%.
This figure is higher than the accuracy reported by Clemens for both the logistic
regression model (97.94%) and the best-performing model, SVMs (98.35%). We
observe that this mismatch may be due to differences in the implementations of
the logistic regression model: Clemens uses the SimpleLogistic implementation
in Weka3, without regularization; instead, we use a different implementation with
L1 regularization. Specifically, we notice a higher difference in the F-measure for
MIPS and MIPSEL and for CUDA. We argue that the low accuracy for CUDA
in [14] could be due to the very low number of samples available (20). Adding

3 http://weka.sourceforge.net/doc.dev/weka/classifiers/functions/SimpleLogistic.
html



Table 1. Architecture identification performance on code-only samples. To produce the
results in the Original column, we removed the samples not used in [14] (clemency and
additional avr and cuda programs).

F1 Measure

Architecture # Precision Recall AUC Complete Original [14]

alpha 1295 0.9992 0.9992 0.9996 0.9992 0.9985 0.997
x86-64 897 0.9989 0.9978 0.9988 0.9983 0.9983 0.990
arm64 1074 0.9991 0.9991 0.9995 0.9991 0.9986 0.994
armel 903 1.0 1.0 1.0 1.0 1.0 0.998
armhf 904 0.9989 0.9989 0.9994 0.9989 0.9983 0.996
avr 365 (292) 0.9974 0.9974 0.9985 0.9974 0.9808 0.936
clemency 20 (0) 0.9048 0.95 0.9749 0.9268 - -
cuda 133 (20) 0.9773 0.9699 0.9849 0.9736 0.9 0.516
hppa 472 1.0 1.0 1.0 1.0 1.0 0.993
i386 901 1.0 1.0 1.0 1.0 1.0 0.993
ia64 590 1.0 1.0 1.0 1.0 1.0 0.995
m68k 1089 0.9991 0.9991 0.9995 0.9991 0.9986 0.993
mips 903 0.9978 0.9989 0.9994 0.9983 0.9906
mipsel 903 0.9956 0.9978 0.9988 0.9967 0.9895 0.886
powerpc 900 0.9978 0.9989 0.9994 0.9983 0.9989 0.989
ppc64 766 0.9987 1.0 1.0 0.9993 0.998 0.996
s390 603 0.9967 0.9983 0.9991 0.9975 0.9983 0.998
s390x 604 1.0 0.9983 0.9992 0.9992 0.9992 0.998
sh4 775 0.9949 0.9987 0.9992 0.9968 0.9968 0.993
sparc 495 0.986 0.996 0.9977 0.991 0.9939 0.988
sparc64 698 0.9971 0.9971 0.9985 0.9971 0.9986 0.993

Total / Average 15290 0.9928 0.9939 0.9969 0.9933 0.9918 0.9566

multi-byte prologue and epilogue patterns as features does not improve signif-
icantly the performance of the classifier, which already performs well without
them: The global F-measure is 99.33% vs. 99.18% of the model without extended
features. We also notice that, despite cLEMENCy being an architecture developed
with the purpose to break existing tools, ELISA still obtain a F-measure of 92%.

Evaluation on Full Executables. We now consider complete “real-world” ex-
ecutables with both code and non-code sections: We use full ELF files, without
extracting the code section. Classifying a complete binary is more challenging be-
cause the data contained in the non-executable sections may confuse the classifier.
We evaluate the classifier on the following datasets:

– Debian. We automatically downloaded 300 random packages from the reposi-
tories of the Debian GNU/Linux distribution, compiled for 8 different archi-
tectures, and we extracted the ELF executables contained in these packages,
obtaining 3,072 samples (note that not all packages were available for all the
supported architectures, and some binaries contained multiple ELF files).



– ByteWeight. The authors of ByteWeight [23] made their dataset available on-
line4. This dataset contains the GNU coreutils, binutils and findutils compiled
for Linux, for the x86 and x86-64 architectures, and using different compilers
(GNU GCC and Intel ICC) and optimization levels (O0, O1, O2, O3). The
dataset also contains a smaller number of Windows PE executables compiled
with Microsoft Visual Studio for the same two architectures and with four
levels of optimization; thus, despite being composed of two classes only, it is
a rather heterogeneous dataset.

We evaluated the classification performance on both the Debian and the ByteWeight

datasets separately, using 5-fold cross-validation. The results are reported in Ta-
ble 2. Our classifier is accurate even when dealing with binaries containing both
code and data sections; we do not notice significant differences in performance
among the different architectures (classes).

Table 2. Architecture identification on complete binaries (unpacked and packed Debian
GNU/Linux and ByteWeight dataset). For comparison with files with code sections only,
the last column reports the F1 measure from the Complete column of Table 1.

Architecture Debian ByteWeight Table 1

# Precision Recall AUC F1 # F1 F1

x86-64 386 0.9922 0.9922 0.9956 0.9922 1097 0.9910 0.9983
arm64 382 1.0 0.9974 0.9987 0.9987 0.9991
armel 385 0.9948 0.9974 0.9983 0.9961 1.0
armhf 385 0.9974 0.9974 0.9985 0.9974 0.9989
i386 386 0.9948 0.9948 0.997 0.9948 1100 0.9908 1.0
mips 384 1.0 1.0 1.0 1.0 0.9983
mipsel 384 0.9974 0.9948 0.9972 0.9961 0.9967
ppc64el 380 0.9974 1.0 0.9998 0.9987 0.9993

Total/Average 3072 0.9968 0.9968 0.9981 0.9968 2197 0.9909 0.9981

Impact of the Sample Size. To study the impact of the file size on the classifier
performance, we extract the code section from each sample in the Debian dataset;
then, we extract a random contiguous sub-sequence of s bytes from each file,
and we repeat the process for fragment sizes s between 8 bytes and 64 KiB.
We evaluate the classifier on each set of fragments via 10-fold cross-validation,
considering the macro-averaged F-measure as the performance metric. The results,
with a regularization parameter5 C = 10000, are reported in Figure 3 and show
that even for small code fragments (128 bytes), our classifier reaches a F-measure
of 90%. For 512-byte fragments, the F-measure is over 95%.

4 http://security.ece.cmu.edu/byteweight/
5 We determine that C = 10000 is the optimal value through grid search optimization.
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Figure 3. Impact of the sample size on ISA detection performance

3.2 Code section identification

To set the hyper-parameters, we observe that the CRF regularization strength
(C) does not influence the prediction if we stop the model after a fixed number of
iterations of the Frank-Wolfe algorithm, so we fix C = 1. The other parameters
are set to: lookahead and lookbehind length n = m = 1, 20 iterations, regulariza-
tion strength C = 1, post-processing parameters cutoff = 0.1,min_sections = 3.
The performance measures are obtained by computing the fraction of correctly
classified bytes with respect to the ground truth for each sample, and then by
performing an average on the number of samples, giving each sample the same
weight, regardless of its size. We also report, for each dataset, the fraction of bytes
labeled as code in the ground truth. We extract the ground truth by parsing the
header of the original ELF, PE or Mach-O files to retrieve the section bound-
ary information. To obtain the results, summarized in Table 3, we use different
datasets, we train a different model for each architecture and for each dataset,
and we evaluate the classification performance using 5-fold cross-validation:

– Debian. We select a subset of the Debian binaries used for the evaluation
of the ISA identification algorithm. We report the results both before and
after the post-processing phase. The F-measure is over 99% for all the ar-
chitectures with the post-processing enabled. The post-processing algorithm
consistently improves the performances of our model by removing noise. If
we decrease the number of iterations of the SSVM learner, the contribution
of the post-processing algorithm becomes even more important: Thus, our
post-processing algorithm allows to reduce the training time of the model
without sacrificing the quality of the predictions. Figure 4 shows how the
post-processing algorithm compensates for the errors of a model trained with
a low number of iterations. We also use this dataset to optimize the lookahead
and lookbehind parameters n = m by grid search on a random selection of
two thirds of the dataset (the other third being used for validation). As shown
in Figure 5a, we notice that model with the post-processing step enabled
always outperforms the model without it, and that the accuracy in the model



Table 3. Code section identification performance.

Architecture Samples[#] Code Sec. [%] Accuracy Precision Recall F1

x86-64 41 40.69 0.9984 0.9969 0.9992 0.998
x86-64 (post-proc.) 41 40.69 0.9995 0.9984 1.0 0.9992

arm64 33 47.83 0.9931 0.9934 0.9922 0.9927
arm64 (post-proc.) 33 47.83 0.9995 0.9989 1.0 0.9995

armel 33 59.22 0.981 0.992 0.9749 0.9832
armel (post-proc.) 33 59.22 0.9983 0.9997 0.9977 0.9987

armhf 46 46.32 0.9847 0.9881 0.9753 0.9813
armhf (post-proc.) 46 46.32 0.9997 0.9995 0.9999 0.9997

i386 40 44.17 0.9946 0.9914 0.9966 0.9939
i386 (post-proc.) 40 44.17 0.9995 0.9985 1.0 0.9992

mips 40 41.51 0.9958 0.9926 0.9955 0.994
mips (post-proc.) 40 41.51 0.9995 0.9983 0.9999 0.9991

mipsel 40 43.64 0.9873 0.9807 0.9943 0.9866
mipsel (post-proc.) 40 43.64 0.9919 0.9901 1.0 0.9941

powerpc 19 57.69 0.9911 0.9858 0.9962 0.9908
powerpc (post-proc.) 19 57.69 0.9992 0.9976 0.9999 0.9988

ppc64el 40 41.66 0.9916 0.9904 0.9924 0.9912
ppc64el (post-proc.) 40 41.66 0.9985 0.9951 1.0 0.9975

x86-64 (ByteWeight) 40 27.13 0.9992 0.9994 0.9987 0.999
x86 (ByteWeight) 40 27.14 0.9998 0.9997 0.9996 0.9996

x86-64 (Mach-O) 165 27.59 1.0 0.9998 1.0 0.9999

avr (Arduino) 73 9.56 0.9999 0.9993 1.0 0.9997

with post-processing is consistently high: it does not change depending on
the choice of the hyperparameter. According to this data, we decided to set a
minimal lookahead and lookbehind length of 1 byte for our experiments, and
to enable the post-processing phase.

– ByteWeight. We select a subset of the ByteWeight dataset used for the evalu-
ation of the ISA identification algorithm, randomly sampling 40 executables
for each architecture from the 2,197 in the dataset.

– Mach-O. We collect 165 system binaries in the Mach-O format from an instal-
lation of macOS 10.12 (x86-64).

– AVR. We collect 73 AVR binaries by compiling the Arduino samples [20] for
the Arduino UNO6 hardware.



Actual (code fraction = 55.901%)

Prediction (accuracy: 56.583%, precision: 56.586%, recall: 97.329%, FP: 662, FN: 514)

Errors before post-processing

Prediction w/post-processing (accuracy: 99.956%, precision: 99.922%, recall: 100%, FP: 15, FN: 0)

Errors after post-processing

Figure 4. Results of the code section identification method on a sample (MIDGsmooth
from the Debian repositories), stopping the Frank-Wolfe algorithm after 10 iterations.
While the prediction of the classifier alone is noisy, after the preprocessing phase there
are no false negatives, and false positives are significantly reduced.

Table 4. Performance of the fine-grained code discovery method.

Architecture Samples [#] Inlined Data [%] Accuracy Precision Recall F1

Windows x86-64 50 27.16 0.9997 0.9997 0.9999 0.9998
Windows x86 50 30.94 0.9996 0.9997 0.9997 0.9997

ARM coreutils -O0 103 5.36 1.0 1.0 1.0 1.0
ARM coreutils -O1 103 7.59 0.9998 0.9998 1.0 0.9999
ARM coreutils -O2 103 7.88 0.9998 0.9998 1.0 0.9999
ARM coreutils -O3 103 7.14 0.9998 0.9998 1.0 0.9999



3.3 Code discovery

Ground Truth Generation. Obtaining a set of binary executables with bytes
pre-labeled as code or data in a fine grained fashion is a non-trivial problem, and
previous research use a variety of methodologies to generate the ground truth.
Wartell et al. [10] pre-label bytes according to the output of a commercial recursive
traversal disassembler, IDA Pro, and evaluate the proposed methodology by
manually comparing the results with the disassembler output; Karampatziakis et
al. [24] work similarly by using the OllyDbg disassembler for labeling. This method
is error-prone: Erroneous ground truth may lead to errors both in the model
training, and in the evaluation of the model performance; manual comparison
makes the approach non scalable. Andriesse et al. [11] and Bao et al. [23] use a
more precise technique: They extract the ground truth from compiler- generated
debugging symbols, by compiling a set of applications from source. We use a
variant of this latter approach to generate our ground truth.
x86 and x86-64. To show that a sequential learning model, trained on simple
byte-level features, can effectively separate code from data, we compiled a x86
and x86-64 dataset with Microsoft Visual Studio, which is known to embed small
chunks of data within code. We configured the compiler to generate full debug
symbols (by using the DebugFull linker option and the /p:DebugType=full

MSBuild compiler option). As a dataset, we use the C++ projects in the Microsoft
Universal Windows Platform (UWP) app samples [25], a Microsoft-provided set of
Windows API demonstration applications. We automatically compile the dataset
for both x86 and x86-64, parse the debug symbol files (.pdb) with dia2dump [26],
and convert the textual representation of each .pdb file into the final ground truth
format, i.e., a binary vector that indicates if each byte in the executable file is
part of a machine instruction or not, discarding the non-code sections.

We configured the model with C = 1, we set the lookahead and lookbehind
to n = m = 1, and we set 30 as the maximum number of iterations for the
Frank-Wolfe algorithm. We evaluate our model on a randomly chosen subset of
the dataset (we remark that the samples are large, with a median size of 1.68
MB). We performed holdout testing, reserving 10 executables for training and
40 for testing for each architecture. Table 4 reports the results: Accuracy and
F-measure are over 99.9% for both the x86 and the x86-64 architectures. Although
the ground truth generation method and dataset differ, this result is in line with
the mean accuracy (99.98%) of the approach by Wartell et al. [10].

As a baseline, we evaluated the performance of objdump (the linear disassem-
bler included with the GNU binutils) on the Windows x86 and x86-64 datasets, by
comparing the output of the disassembler with the ground truth extracted from
the debugging symbols. We considered as data all the bytes which objdump could
not decode as valid instructions, as well as all the decoded int3 opcodes and
those opcodes having “data” or “word” in their names. We found that objdump

correctly classifies on average 94.17% of the bytes as code or data for the x86
dataset; the accuracy for the x86-64 dataset is higher at 98.59%.
6 http://www.arduino.org/products/boards/arduino-uno
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Figure 5. Model accuracy vs. lookahead/lookbehind length.

In conclusion, our method is more accurate than a simple linear disassembly
approach, which still gives good results on x86 binaries [11].

ARM. We evaluate our classifier with instruction-level features for fixed-size
instruction architectures on the ARM GNU coreutils compiled with debugging
symbols with four different levels of optimization (-O0, -O1, -O2, -O3)7. Since
the debugging symbols are embedded in the ELF executables in the standard
DWARF format [27], we use the linear disassembler included in GNU binutils,
objdump, to obtain a precise disassembly and to separate code and data for the
ground truth. To generate the ARM-specific instruction-level features, first we
strip the debugging symbols from the binary using strip from GNU binutils;
then we disassemble the stripped file with objdump and extract our features.

We set the number of iterations of the SSVM learner to 20, and we choose
m = n = 1 (i.e., 1 instruction, 4 bytes,) for the lookahead and lookbehind. We
evaluate the model separately for each level of optimization of the binaries in
the dataset, and we compute the performance metrics performing 5-fold cross-
validation. Table 4 reports the results: the predictions of our model are almost
perfect (accuracy of over 99.9%) for any optimization level. This is expected:
Indeed, this problem is easier than code discovery using generic features for x86
and x86-64, as the model can work directly on each 4-byte word, not on single bytes
potentially containing a part of an instruction, and the features are generated by
a linear disassembler (objdump) which can detect the 4-byte words which cannot
be decoded into valid ARM instructions.

Lookahead and lookbehind tuning. We optimize the lookahead parameter
n (and lookbehind, which we choose to set at the same value of the lookahead)
executing a grid search for n 2 [0, 8]. For the x86 and x86-64 dataset (Figure 5b, 3-
fold cross-validation, 10 iterations for the SSVM learner), we notice no significant
performance improvement when the lookahead length is higher than 3 bytes. For
ARM (Figure 5c, 10-fold cross-validation on the -O1 binaries, 75%/25% holdout
testing), we see that, although the model without lookahead nor lookbehind scores
well, a slight improvement can be obtained by setting a lookahead/lookbehind
length equal to 1 word.

7 https://github.com/BinaryAnalysisPlatform/arm-binaries



4 Related Work

Separating code from data in executable files is a well-known problem in static
binary analysis. Commercial disassembly tools need to perform, at least implicitly,
this task. Andriesse et al. [11] analyze the performance of state-of-the-art x86 and
x86-64 disassemblers, evaluating the accuracy of detecting instruction boundaries:
For this task, linear sweep disassemblers have an accuracy of 99.92%, with a
false positive rate of 0.56% for the most difficult dataset, outperforming recursive
traversal ones (accuracy between 99% and 96%, depending on the optimization
level of the binaries). Despite this, simple obfuscation techniques such as inserting
junk bytes in the instruction stream are enough to make linear disassemblers
misclassify 26%-30% of the instructions [28]. Kruegel et al. [29] address the
code discovery problem in obfuscated binaries, and proposes a hybrid approach
which combines control-flow based and statistical techniques to deal with such
obfuscation techniques. More recently, Wartell et al. [10] segment x86 machine code
into valid instructions and data based on a Predication by Partial Matching model
(PPM), aided by heuristics, that overcomes the performance of a state-of-the-art
commercial recursive traversal disassembler, IDA Pro, when evaluated with a small
dataset of Windows binaries. The model evaluation is done by manually comparing
the output of the model with the disassembly from IDA Pro, because precise
ground truth for the binaries in the training set is not available. This limitation
does not allow to test the method on a large number of binaries. This approach
supports a single architecture (x86), and relies on architecture-specific heuristics:
supporting a new ISA requires implementing the new heuristics. Chen et al. [13]
address the code discovery problem in the context of static binary translation,
specifically targeted ARM binaries; they only consider only the difference between
32-bit ARM instructions and 16-bit Thumb instructions that can be mixed in the
same executable. Karampatziakis et al. [24] present the code discovery problem
in x86 binaries as a supervised learning problem over a graph, using structural
SVMs to classify bytes as code or data.

More in general, machine learning tools have been applied to various problems
in static analysis. Rosenblum et al. [30] address the problem of Function Entry
Point identification in stripped binaries, using linear-chain Conditional Random
Fields [15] for structured classification in sequences, the same model we propose
in ELISA to tackle the problem of code discovery. Finally, ByteWeight [23] uses
statistical techniques to tackle the function identification problem, and Shin et
al. [31] use neural networks to recognize functions in a binary.

To analyze header-less files, ELISA needs also to identify the ISA. This task is
a specialization of the problem of file type classification, well-known in computer
forensics. In this context, many statistical techniques have been proposed, usually
leveraging differences in the distribution of byte frequency among different file
types [32,33,34,35]. Forensics techniques usually aim to classify all executable
files in the same class, thus are not applicable as-is to our problem. Clemens [14]
addresses the ISA identification problem as a machine learning classification
problem, by using features extracted from the byte frequency distribution of the
files, and comparing different machine learning models on the same dataset. Our



ISA identification step is a variant of this technique. cpu_rec [36] is a plugin
for the popular binwalk tool that uses a statistical approach, based on Markov
chains with similarity measures by cross-entropy computation, to detect the CPU
architecture or a binary file, or of part of a binary file, among a corpus of 72
architectures. A completely different approach leverages static signatures: the
Angr static analysis framework [3] includes a tool (Boyscout) to identify the CPU
architecture of an executable by matching the file to a set of signatures containing
the byte patterns of function prologues and epilogues of the known architectures,
and picking the architecture with most matches; as a drawback, the signatures
require maintenance and their quality and completeness is critical for the quality
of the classification; also, this method may fail on heavily optimized or obfuscated
code lacking of function prologues and epilogues.

5 Limitations

We are aware of some limitations to our work. First of all, our classifiers work
at the byte level and do not use any instruction-level feature: While this allows
ELISA to be signature-less, the lack of any notion of “instruction” means that it
can mis-classify as code some byte sequences that are not valid ISA instructions.
More advanced models could include some knowledge about the ISA and group
the bytes corresponding to code into valid instructions. We provided an example
of including ISA-specific knowledge with our features for fixed-byte instructions
in section 2.1. Also, our code discovery approach for ARM binaries may be
extended for the case of ARM/Thumb mixed-ISA binary executables.

Second, our approach is not resilient to malicious attempts aimed at preventing
static analysis via obfuscation: For example, large amounts of dead code in the data
sections of the file may make ELISA recognize the section as code (or vice-versa),
and similar approaches may be used to adversarially alter the byte frequency
distribution used as a feature to recognize the executable binary architecture. In
fact, if we pack the samples of our Debian dataset with the popular UPX [37] packer,
discarding any executable not correctly packed, we achieve a very low F1 score
(0.282) when we classify the resulting 1,745 files with our architecture classifier
trained with a subset of the unpacked Debian dataset. Indeed, the architecture
classifier is not robust to classify files with a high quantity of noise, i.e., the high-
entropy uniform data of the packed code, with respect to the small unpacking
stub that contains the features to be detected.

Finally, although header-less files are common in the analysis of embedded
firmware, we decided not to evaluate our approach to real firmware because of the
lack of ground truth data and the need of basing the evaluation of a, necessarily
inaccurate, manual reverse engineering of each sample.

6 Conclusions

We presented ELISA, a supervised learning methodology to automatically separate
data from code in stripped, header-less executable files, and to automatically detect



the ISA the executable file is compiled for in case it is unknown. We extended
the approach presented by Clemens [14] and obtained better result on the ISA
identification problem, while we proposed a novel sequential learning method to
perform code section identification and fine-grained code discovery inside the code
section. Our experiments show that ELISA performs well on a comprehensive,
real-world dataset; thus, our work shows that sequential learning is a promising
and viable approach to improve the performance of reverse engineering and static
analysis tools.

Our work can be extended in various directions. First, ELISA aims to separate
code from data. Building on this approach, future work can extend our code section
identification to the multi-class classification case, in order to distinguish between
non-code sections with peculiar patterns (e.g., jump tables, relocations, headers)
and, more in general, to computer forensics applications, e.g., the identification of
file segments and their classification by file type. Furthermore, our code discovery
approach for ARM binaries may be extended for the case of ARM/Thumb mixed-
ISA binary executables. Finally, future work may address the challenge of packed
executables, raised in Section 5, using entropy analysis techniques, e.g., analyzing
the entropy of neighbor bytes to detect the presence of compressed data.
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