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ABSTRACT
The ever-increasing number of malware samples demands for au-
tomated tools that aid the analysts in the reverse engineering of
complex malicious binaries. Frequently, malware communicates
over an encrypted channel with external network resources under
the control of malicious actors, such as Command and Control
servers that control the botnet of infected machines. Hence, a key
aspect in malware analysis is uncovering and understanding the
semantics of network communications.

In this paper we present SysTaint, a semi-automated tool that
runs malware samples in a controlled environment and analyzes
their execution to support the analyst in identifying the functions
involved in the communication and the exchanged data.

Our evaluation on four banking Trojan samples from different
families shows that SysTaint is able to handle and inspect encrypted
network communications, obtaining useful information on the data
being sent and received, on how each sample processes this data,
and on the inner portions of code that deal with the data processing.

KEYWORDS
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1 INTRODUCTION
In the last years, the malware criminal industry has continuously
grown, with toolkits that allow cybercriminals to easily run prof-
itable malicious campaigns (e.g., ransomware [7], banking Tro-
jan [6]) being sold on the black market. As a result, new malicious
specimens keep appearing on the Internet at high rates. According
to McAfee Labs Q4 2017 Threat Report [1], 57.6 million new sam-
ples have been observed in Q3 2017. As a consequence, security
researchers developed scalable automated tools to analyze large
amounts of samples.

A malicious sample can either be studied statically, by analyzing
its binary code, or dynamically, by running it in a controlled environ-
ment and observing its behavior. Malware, in turn, employs several
techniques to evade these two analyses and to remain undetected.
Automated analyses are commonly performed through sandbox
software, which executes the sample in a controlled environment
and monitors its activities, collecting data about its interactions
with the operating system and highlighting malicious behaviors.
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There is still, however, a practical need to manually reverse engi-
neer malware samples in order to understand their inner workings
and to deal with modern evasion techniques and new malicious
behaviors. This task remains hard and time-consuming.

In particular, it is hard to analyze and reverse malware sam-
ples when they communicate over an encrypted channel with a
Command and Control (C&C) server [27]. The reversing of these
communication functionalities is itself a major challenge, but is
fundamental to gather insights about the malware families and the
capabilities of the samples under analysis.

In this paper we present SysTaint, a semi-automated tool that
allows running malware samples in a controlled environment and
analyze their execution to extract information about the data-flows
and the inner network-related functionalities. These information
can be interactively explored to dig into the malware’s behavior
and quickly find the malicious code handling a given piece of data.
For instance, our tool can track the data read from a file or received
over the network, and help to understand how this data is processed
before it is sent over the network. This allows to effectively debug,
in a semi-automated fashion, malicious functionalities that rely on
network events.

We implemented SysTaint on top of the Platform for Architecture-
Neutral Dynamic Analysis (PANDA) [9], a framework that allows
to record a sample execution, replay it deterministically, and study
in details the executed trace during the replay phase. SysTaint mon-
itors the communication between the sample and the operating sys-
tem, tracks the data-flows, logging the involved internal functions,
and automatically detects the usage of encryption. By inspecting
the recorded execution through SysTaint, a malware analyst can
easily find the provenance of encrypted the data sent over the net-
work, locate the corresponding unencrypted data and the code that
deal with the data processing. Finally, we integrated SysTaint with
the Cuckoo Sandbox [2], a widespread open source sandbox, to
leverage its functionalities and to ease the deployment in existing
analysis environments.

We experimentally verified SysTaint by analyzing four samples
of banking Trojans whose behavior relies on exchanging data with
a C&C. Thanks to SysTaint, we were able to quickly inspect the
content of encrypted network communications, obtaining useful
information on the data exchanged over the network, and on the
malicious code processing such data.

In summary, we make the following contributions:

• We implemented SysTaint, a system that extracts from the
(recorded) execution of a given sample information about
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the data-flows and the code involved in the processing of
each data-flow. We implemented SysTaint as a set of plugins
for the PANDA platform.

• We showed that SysTaint is able to assist analysts in re-
versing malicious network communications (e.g., malware
exchanging data with a C&C), by identifying and extracting
both the code and data involved in network activities.

• In the spirit of open science, we made SysTaint publicly
available for the community1.

2 BACKGROUND AND MOTIVATION
Automatically analyzing malware has become a practical necessity
for security firms, which need to determine the behavior, nature,
and family of a large number of malware samples to protect com-
panies and end users. Hence, the security industry has developed
highly sophisticated solutions to automatically detect if a given bi-
nary sample is malicious (e.g., antivirus software [26]) and tools to
analyze the behavior of unknown software. Automated analysis so-
lutions employ a variety of techniques that can be classified in static
and dynamic. While static analysis techniques extract information
by analyzing the code of the sample, dynamic analysis techniques
consist in running the sample in a controlled environment to gather
information on the behavior and the inner workings of a sample.

2.1 Motivation
The most common dynamic analysis solutions are based on sand-
box environments and are designed to process a large number of
samples. These solutions run each sample in a virtual machine,
tracking and logging the interactions of the sample with the oper-
ating system and known libraries. Even though automated sandbox
analysis systems are widely employed in observing the behavior
of a malicious sample, they offer limited help in the reverse engi-
neering task since they do not fully capture the behavior and inner
workings of the sample. On the other hand, the existing automated
reverse engineering approaches, and in particular the ones focus-
ing on the communication protocols [5], are not easy to apply in
practice due to the heavyweight instrumentation required and the
lack of publicly available open source implementations. Therefore
manual and multiple debugging sessions are still by large the most
employed method to extract in-depth information on the behavior
and inner working of a malware. Unfortunately, debugging requires
the analysts a significant amount of time and expertise, especially
when the malicious behavior is particularly difficult to replicate
and inspect. Additionally, performing dynamic analysis on malware
communicating with external servers may be difficult or impossible
when the sample’s C&C is not reachable [12].

2.2 Case Study
An example of a hard-to-reverse behavior is the communication
with the C&C server. The communication is usually encrypted and
unintelligible from the logs that a sandbox captures. Even when
encryption is not employed, it may be useful, from the reversing
point of view, to understand how the data the malware retrieves
from the system is processed and used. In addition, the results of the

1https://github.com/vigliag/systaint

analysis on the communication with the C&C (e.g., the data trans-
mitted, the timing) depends on a series of factor (e.g., the server
status, the time-span of the analysis, the connectivity) that makes
the dynamic analysis a daunting task, since it requires to pause
(when debugging) or significantly slow down (when employing
heavyweight instrumentation [10]) the execution of the sample,
possibly causing the network communication to fail [27, 28]. In
fact, the reversing of the communication protocol is a key aspect
for malware analysts, since it allows, for instance, to obtain useful
information about botnets [32]. In this work, therefore, we want
to focus on providing tools and information to speed up the anal-
ysis and reversing of the encrypted communications between the
malware and the C&C servers.

2.3 Goals
The goal of this work is to develop a framework to support mal-
ware analysts in the dynamic analysis and reverse engineering of
real-world malicious samples, bridging the gap between these two
activities. In particular, we aim to ease the reversing of malware
samples by leveraging the record-replay functionalities provided
by PANDA [9] to perform semi-automated analyses and data extrac-
tion on the recording, and guide the manual reverse engineering
of the malware code. We also aim to propose a practical mean of
collecting useful information from dynamic analysis that can offer
an alternative to manual debugging sessions and avoid the diffi-
culties of debugging malware whose behavior may vary between
executions because of external network inputs.

To achieve these goals, we want our system to be able to:
• record the execution, then replay and re-analyze it at a later
time, thus removing the dependence of the analysis on the
presence and behavior of external servers;

• uncover the contents of encrypted network communications;
• track the flow of the data the sample exchanges with the
system and the network, locating how and where in the
sample’s code the data is obtained, transformed and used,
and focusing, in particular, on the data flows involved in the
network communications.

2.4 Challenges
We present here themain challenges in the development of SysTaint:
Deriving semantics from low-level data. The main challenge
of any reverse engineering task is to recognize high level behaviors
from large amounts of low level instructions and data that appear
meaningless when not considered in their context. For this reason,
to present the analyst with meaningful information about what is
happening in the program, it is important to automatically infer
as much high-level information as possible. Solutions like PANDA
work as a hypervisor, observing the execution of the programs by
monitoring the instructions and the memory accesses being exe-
cuted. Determining what these instructions and memory accesses
represent in the context of the current program and operating sys-
tem is a complex task called Virtual Machine Introspection (VMI).
Despite, from the hypervisor standpoint, we have full visibility
into system memory, some information that are easy to access at
run-time, for example the current thread identifier, normally avail-
able through the GetCurrentThreadId Win32 API call, are harder
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to access by means of VMI, requiring knowledge of OS internals.
Moreover, the recordings we analyze, provided by PANDA, do not
capture information like the state of the files on disk, nor include
the memory pages swapped out to disk. This makes it difficult to
query the state of the system at a given time.

Timing. When studying the behavior of malware, timing plays
a key role since, from the moment the sample is first executed, it
can quickly start several other processes and inject itself into them.
An infected process’ memory layout and code can also change sig-
nificantly during the analysis because of the use of packing and
injection techniques. Some information may only be in memory
for a certain time-window as, for example, temporary buffers con-
taining unencrypted data, the unpacked code of the malware, or
some dynamically loaded libraries. When using memory analysis
or VMI to obtain information, it is important to access memory at
the right points in time.

Isolating the behavior of the malware. Another challenge is
distinguishing the behavior of the sample under analysis from the
benign activities of the operating system and the other running
processes. This is particularly evident when analyzing the network
activity logs, as several unrelated communications from different
processes can overlap. Moreover, malware code is often executed
from inside an infected benign process (e.g., Internet Explorer), mak-
ing it necessary to distinguish the actions of the malware from the
ones of the host process.

Malware employing encryption.As part of themalware authors’
efforts to hinder the analysis, the communications between mal-
ware and their command and control server are usually encrypted,
either by using an encrypted channel (e.g., HTTPS), or by using
an unencrypted channel and encrypted payloads. Recovering the
unencrypted message is fundamental to the reverse engineering
of the communication protocol, and usually involves finding and
instrumenting the cryptographic functions called by the sample.

Malware employing evasion techniques.Malware try to evade
the analysis by detecting some artifacts of the virtual environment
or analysis software. Additionally, even a simple strategy such
as waiting a long-enough time before acting, if not detected, can
effectively hide the malware activities from the behavioral analysis.
Unfortunately, countering these strategies is hard and is part of
an ongoing cat-and-mouse game between malware authors and
analysts. As a consequence, the presence of malware samples able
to evade a given automated analysis must be assumed.

Performance and memory considerations. Dynamic analysis
can have a significant CPU and RAM overhead. This is the case
with taint tracking, a technique to extract dataflow information,
which requires instrumenting almost every assembly instruction
and potentially a large amount of memory to keep track of the
tainted memory locations. When dynamic analysis is used to col-
lect data, disk space is also a concern, and a trade-off between
storage and the amount of details to record must be found. In fact,
some malware samples produce a large amount of recorded activity
as part of their normal operation – for example a ransomware en-
crypting numerous files – while others perform a huge amount of
unrelated operations to produce too much activity to be recorded
and analyzed, and evade sandbox analysis.

3 APPROACH OVERVIEW
SysTaint is a semi-automated tool that allows running malware in
a controlled environment and analyze their execution to extract
information about the data-flows and the sample’s inner functions.
These information can be interactively explored to dig into the mal-
ware behavior and quickly find the functions handling a given piece
of data. For instance, our tool can track the data read from a file or
received over the network, and help to understand how this data
is processed and used. Similarly, this tool can be used to discover
what data a malware sample is sending through the network and
how it was produced and manipulated. By leveraging record-replay
analysis solutions, extracting from the recording useful informa-
tion that are usually obtained through manual debugging sessions,
detecting encryption, and reconstructing the data-flows we aim to
address the challenges in the study of malware whose execution
relies on network communications with external servers.

From a high level perspective, SysTaint collects in-depth data
about a subset of the functions called by themalware sample and the
data they handled, and uses system call tracing, taint analysis and
cryptographic functions detection to build an interactive data-flow
graph. Our approach, represented in Figure 1, can be summarized
in five steps:

(1) Sample execution recording. The activity of the malware
is recorded by running it in a virtual machine, leveraging
the record-replay capabilities of PANDA [9]. This process
can be performed either manually or through an automated
analysis system.

(2) Activities of interest selection. The analyst selects some
malware behavior to inspect, using an interaction with the
operating system as starting point. For example, a given API
call or network exchange.

(3) Preliminary analyses. The tool performs some prelimi-
nary analyses on the recording: first, the identification of the
processes involved in the selected malware behaviors, then,
the detection of the usage of cryptographic and compression
functions in these processes.

(4) Data-flow analysis and data collection. The tool runs a
more heavyweight analysis, performing the data-flow anal-
ysis and collecting the input and output data of a subset of
the internal functions of the sample.

(5) Interactive data exploration. The analyst interactively ex-
plores the malware execution by querying the collected data.

3.1 Sample Execution Recording
In this step, we execute a malware sample in a virtual machine for
a given amount of time and leverage the record-replay capabilities
of PANDA to obtain a recording of the execution. In the remaining
steps of our approach, we will work on the recording obtained in
this step, extracting the data we need by deterministically replaying
the recording with added instrumentation.

We configured an existing sandbox software to use PANDA as
hypervisor, so to automatically obtain, during the sandbox’s analy-
sis, a recording of the execution that can be used for a later in-depth
analysis and reverse engineering process. Doing so, we can also
take advantage of the existing analysis infrastructure, its reports,
and anti-evasion countermeasures.
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Figure 1: Overview of SysTaint approach. In blue the main
analysis phases, in yellow the intermediate data

In contrast to existing sandbox software, since the recording
includes all the processes in the system, we do not need to make any
real-time decision on which processes to instrument, and we delay
the identification of malicious processes to the later preliminary
analyses phase. This is an advantage since we do not rely on the
automated and real-time detection of the mechanisms a malicious
sample may use to create new processes, which is prone to fail and
often excludes interesting processes from the analysis.

3.2 Activities of Interest Selection
The second step requires the analyst to manually identify some
interactions of the sample with the operating system to use as
starting point to study the sample’s inner workings. These inter-
actions are used in the preliminary analyses phase to identify the
processes to include in the analysis, and later as a starting point for
the interactive data exploration.

The analyst identifies these interactions by inspecting the net-
work log and a behavioral log, containing the system and API calls
performed by the sample, which are either provided by the sandbox
or extracted from the recording. For instance, the analyst could
select from the network log some encrypted data the malware sent
through the Internet, to determine its unencrypted contents and
provenance, or he or she could identify some system calls reading
data from the Windows registry to find out how this data is used.

3.3 Preliminary Analyses
The preliminary analyses phase consists in three sub-steps, repre-
sented in Figure 2:

(1) Collection of information on the processes and their
memory maps, to later display annotated memory addresses
and obtain the addresses of known functions in Windows’s
APIs.

(2) String searching to find usages of some previously identi-
fied interesting data. This is useful to find the processes of
interest, and gives insights on the functions processing the
identified data as-is.

(3) Detection of cryptographic functions usage to easily lo-
cate them and their outputs during later phases.

Behavioral log Network logRecording
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Detection of
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functions

Cryptographic
functions

Known library 
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Interesting
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Figure 2: Overview of the the preliminary analyses

3.3.1 Collection of information on the processes. In this phase, we
inspect the virtual machine’s memory to automatically collect in-
formation about every process. For each process, we replay the
recording until a point in time when the libraries and malware
code are loaded in memory, for instance in correspondence with a
process’ last instruction. Then, we use the Rekall [3] framework to
collect:

• information and contents of the pages in the process’ address
space, each with boundaries, permissions, and mapped file
(if any). This information is obtained by parsing the VAD
tree [8];

• the list of stacks and heaps;
• a list of the functions exported by all the DLLs in the process’
address space.

This data is useful in the later phases to recognize the use of
known library functions, to obtain and display information about
memory locations, and to inspect the code at a given address.

3.3.2 String searching. String searching is a technique that allows
to quickly find the processes and functions dealing with some
particular data. It consists in monitoring memory accesses and
scanning for the occurrences of some given string of data – for
example a given piece of ciphertext extracted from the network logs.
From the matching memory accesses it is possible to find the code
processing a given string and, examining the access patterns, infer
whether the data is being read in one or multiple function calls and
whether a function is simply copying the data to a different location
or transforming it. SysTaint’s string searching is based on [10] and
is rooted around the concept of tap points, points in a program’s
execution identified by process ID, program counter, and caller
address. The data being read and written at each tap point is seen
as a stream of bytes, and is separately monitored for the occurrence
of the searched strings. While this approach is fast and efficient and
can reveal the presence of repeated accesses to the same data inside
of a function, it may miss some matches when the data is accessed
across different tap points or not read in order. These cases can
be covered employing per-function-call buffering of the data read
and written: when a function call returns, the buffers it has read or
written are scanned for the searched strings.
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3.3.3 Detection of cryptographic functions usage. Detecting if a
function performs cryptography, compression or encoding (we will
use the term “cryptography” for brevity) allows us, during the data
collection phase, to track its outputs, by tainting themwith a unique
label. The detection of cryptographic calls nodes in the data-flow
graph allows the analyst to quickly locate their inputs and outputs
and to better track the data-flow. As described in section 6, the litera-
ture contains several approaches to perform cryptographic function
detection.We evaluated two approaches, namely the heuristic based
on the ratio of arithmetic operations [5], for its simplicity, and a
custom heuristic based on several per-function metrics, detailed
in the next paragraphs. In our preliminary tests (see Appendix A),
our custom heuristic outperformed the one based on the ratio of
arithmetic operations, identifying a superset of the cryptographic
functions. We thus decided to employ it exclusively for our analyses.

It is worth noting that, since we work on a recording and know
the ciphertext in advance, it is also possible to locate the functions
processing the ciphertext, and by extension the plaintext, with the
previously described string searching techniques, by searching for
functions writing the ciphertext to memory.

In order to apply the heuristics, we replay the execution collect-
ing several per-function-call metrics:

• the size of the function (in basic blocks);
• the total number of executed basic blocks;
• the presence of loops (inferred from the previous two met-
rics);

• the number of arithmetic and total instructions executed;
• the size, entropy, count of ASCII characters of each read and
written buffer.

Custom heuristic. Our custom heuristic aims to detect both cryp-
tographic and compression functions on the basis of the following
criteria:

• cryptographic/compression primitives read or write high
entropy data;

• the call tree having as root a cryptographic/compression
primitive is shallow;

• cryptographic/compression primitives spend most of the
time in loops.

The criteria were iteratively selected evaluating the results of
the sample analysis.

The above heuristic to identify cryptographic primitives is first
applied to all the individual function calls. Then, a function is
marked as “cryptographic” if at most two of all its function calls fail
to satisfy the heuristic (i.e., if more than two function calls do not
satisfy the heuristic, the function is not marked as “cryptographic”).
This allows discarding functions like memcpy which may happen to
copy high-entropy data. We then inspect the callers of the identified
primitives in order to find higher-level functions that, for instance,
call the identified primitives in a loop. We go through each detected
primitive P, marking its caller function C as cryptographic if P is
only called by C and the call trees having as roots the instances
of C are also shallow. Unfortunately, since our heuristics work at
function-level granularity, they cannot detect the use of smaller
obfuscation primitives that have been inlined in the body of a larger
function.
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Figure 3: Overview of the data collection phase

3.4 Data-flow Analysis and Data Collection
In this step, represented in Figure 3, we perform the bulk of the
analysis and produce a file containing in-depth data about the
executed system calls, the internal functions of the samples, their
read and written buffers, and their data dependencies, which are
examined during the interactive data exploration step. During this
step, the recording is replayed, collecting and logging events and
performing taint analysis to find dependencies between them.

An event is defined as a series of instructions executed on a given
thread in precise time interval. Events can either be: Syscallswhich
cover the activity of kernel-space code from a sysenter to a sysexit
instruction; Encoding functions which cover the activity of a
known data-transformation function, from their call to return; or
Common functions which cover the activity of a function taking
as input tainted data. Each event is identified by a progressive ID,
label, an entry point, its start and end times, its process and thread
IDs, a call stack, an optional tag, and a set of read and written
buffers with their associated taint labels, indicating dependencies
on previous events.

We call active events the events that, at a given time, have started
but not yet ended. If the start of an event is detected on a thread
where there is already an active event, the new event can either be
ignored, or stacked on top of the previous event, on a per-thread
stack of active events. When an event terminates, it is removed
from the stack.

We define current event for a given thread the topmost event in
the per-thread event stack. If on a thread there is a current event
(i.e., the event stack is not empty), all memory accesses happening
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on that thread on the user-space portion of the address space are
attributed to the current event and logged.

All reads or writes to the kernel-space portion of the address
space are ignored since we are only interested in the data entering
or exiting the regions of memory under the control of the user-
space malware code we are studying. Events are stacked or ignored
according to these rules: (1) If there is no current event, any event
can be set as such, (2) If the current event is a common function, any
new event can be stacked on top of it, (3) If the current event is a
syscall, no event can be stacked on top of it - i.e., any nested syscall
is discarded, (4) If the current event is an encoding function, only
syscalls can be stacked on top of it.

The collected data takes the form of a list of events, each logged
together with their input and output buffers and their call stacks.
The input buffers can have taint labels attached, indicating the list
of previous events that generated or transformed the data they
contain. The logged events are either system calls, encoding calls,
or common functions and can optionally have a tag indicating that
they happened during a call to a high-level API.

In the following paragraphs we detail how SysTaint uses taint
tracking, how it uses the information optionally provided by the
existing sandbox software, and finally how it tracks system calls
and their output.

3.4.1 Taint tracking. When a memory access is detected in the
user-space portion of the process’ address space, on a thread where
there is a current event, the memory access is attributed to the event
and logged. If the memory access is a read, the taint labels for the
involved memory locations are fetched and logged together with
the read data. If the memory access is a write and the event is ei-
ther a syscall or an encoding call, the memory locations involved
are tainted with the ID of the current event. Once assigned, the
taint labels are propagated by the taint tracking instrumentation,
copying them to a new location when the corresponding data is
copied, and mixing them when data having different taint labels is
combined – for example as result of an addition. Despite being sim-
ple and not requiring any knowledge of the arguments of syscalls
or functions, we demonstrate the effectiveness of our approach in
the experimental evaluation (see Section 5).

Taint labels are used as follows: if a buffer read by the event E1
is tainted with the label E2, it means that the contents of the buffer
are derived from data written by the event E2, and therefore the
event E1 depends on E2. E1 and E2 can be thought as nodes in the
data-flow graph, with an edge from E2 to E1.

In order to keep memory usage under control, we assign taint
labels only to the outputs of syscalls and encoding call events, and
not to common functions, during which we only propagate the exist-
ing labels. Despite not applying taint, and thus not appearing as a
dependency to later events, the common functions can be still effec-
tively queried to understand how the tracked data is transformed
and to manually uncover undetected encryption functions.

3.4.2 Interaction with existing sandbox software. SysTaint can op-
tionally take advantage of instrumentation, such as the one pro-
vided in most sandbox products, that runs inside the virtual ma-
chine, along the sample. This instrumentation uses function hook-
ing to monitor the sample’s use of known windows API functions,

and logs them to a behavioral log that the analyst can use to exam-
ine an overview of the sample’s behavior and select the API calls he
wishes to inspect further. Through the integration with SysTaint,
the analyst can find the syscall events corresponding to the selected
API calls, examine their arguments, the code of the functions in the
call stack, and follow the data-flow of the involved data.

This kind of instrumentation interacts with our tool using hyper-
calls, special instructions intercepted by the hypervisor, to notify
external events – for example when the sample calls one of the mon-
itored high-level API function. The notified external event contains
an identifier used to cross-reference the entries in the sandbox’s
behavioral log from SysTaint’s events and vice versa. SysTaint treats
external event identifiers as tags, and maintains a separate tag stack
for each thread. When an event (for example a syscall) starts on a
given thread, SysTaint assigns it the topmost tag of the tag stack
for that thread, marking it as part of the API call recorded in the
sandbox’s behavioral log.

3.4.3 Syscall handling and tainting. Syscall events cover the in-
structions executed in kernel-space between a sysenter and a sy-
sexit instruction, which respectively move the control to the kernel
and back to the user-space code. Syscall events allow logging and
taint-labelling all data that enters a process’ own virtual memory,
and act as the main tap/sink points for taint analysis purposes
and as nodes in the resulting data-flow graph. Since syscalls events
only cover the execution of kernel-space code and we only keep
track of user-space memory, we are able to precisely identify and
taint-track the program’s data involved in the syscall, ignoring
unrelated changes to both kernel-space and user-space global data
structures. The main downside of working at the syscall level is
that onWindows a syscall by itself gives little semantic information
to the analyst, especially considering that syscalls’ arguments are
most often pointers and opaque identifiers. To understand what
is happening at a higher level, the analyst either needs to refer to
higher-level functions in the call-stack, or consider the adjacent
syscalls in the dependency graph. As an example of this last method,
from a NtReadFile syscall reading some data of interest it is possi-
ble, following the taint label assigned to the file descriptor, to find
the NtOpenFile syscall, which reads a buffer containing the path
of the file to open.

3.5 Interactive Data Exploration
Once SysTaint completes the data-collection phase, the analyst
can query the collected data interactively to study the malware
behaviors, the involved functions, the data processed, and its flow
through the execution.

To use the obtained data-flow graph to explore the execution,
the analyst should first identify a set of events, corresponding to the
external interactions identified in the activities of interest selection
phase. These can be located, among the collected data, in several
ways:

• by tag, from a high-level API in the sandbox’s behavioral
log;

• by searching the events by some known data they processed;
• by filtering the list of recorded events directly, for example
finding the encryption call or the NtDeviceIoControlFile
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syscall (which transfer data to and from a socket) that has
read the most data;

• by parent function, looking for events having a given address
in their call stack.

Once an event E to use as starting point has been found, there
are several ways to explore the execution.

• by following the data-flow graph backward, to find the func-
tions producing or transforming the inputs of E;

• by following the data-flow graph forward, finding the func-
tions using the outputs of E;

• by looking for events with the same calling functions in the
call stack;

• by looking for common functions writing to the addresses
corresponding to the input buffers of E.

By moving from an event to another as described, the analyst is,
for example, able to locate the event encrypting a buffer starting
from the event sending it through the network. Given a buffer, it is
possible to find the syscalls that originally produced its contents,
as well as the functions writing directly into it.

Inspecting the data-flows can help the analyst to quickly build
an understanding of the internal malware functions, and of the
behaviors they are involved in. By using SysTaint in conjunction
with an interactive disassembler, the analyst can directly inspect the
relevant malware code and annotate it with its findings. Conversely,
from the address of a function in the disassembler, the analyst
is able to inspect its calls in a time-traveling fashion, inspecting
the read and written buffers, their provenance, and the call-stack
information.

4 IMPLEMENTATION DETAILS
SysTaint is implemented as a collection of plugins for the PANDA
analysis framework and Python scripts for analyzing the collected
data. For simplicity of implementation, we decided to only support
Windows7 SP1 on the x86 architecture as guest OS.

The PANDA analysis framework is an open source fork of QEMU
offering a platform for full-system (i.e., operating on the entire vir-
tual machine instead of a single process) reverse engineering. It was
presented by Dolan-Gavitt et al. in [9]. It offers advanced record-
replay features, and a plugin API that makes it easy to perform
several kinds of analysis. PANDA plugins can instrument the exe-
cution by registering callbacks, called at specific points in QEMU
code, for example after a basic block of code has been translated,
or before a memory write.

The main steps of the analysis are carried out by the plugins
fnmemlogger, which collects statistics about the executed functions,
that are then used for the cryptographic functions detection, and
systaint, which performs the actual data collection and taint track-
ing, producing an output file which can be interactively queried.
Other plugins, like stringsearch2 are instead used during the pre-
liminary analysis, or provide common functionalities.

4.1 Taint tracking implementation
To keep memory usage low and gain additional flexibility, we em-
ployed a TCG-based taint-tracking implementation, based on the
one used in QTrace[24]. Notably, we excluded from tainting some

registers like ESP and EBP to avoid detecting faux data depen-
dencies between unrelated functions that added or removed from
these registers then used them to access the stack’s contents. As a
tradeoff, our implementation works at byte-granularity, and, due
to difficulties in instrumenting the x86 instructions that QEMU
implements as C helpers[9], it may propagate taint incorrectly in
some edge cases. We tested our taint implementation as described
in Appendix A, and worked around these limitations by supporting
taint analysis with other methods, as detailed in section 5.

4.2 Integration with Cuckoo Sandbox
We configured Cuckoo Sandbox to use PANDA instead of QEMU
as hypervisor, and customized Cuckoo Monitor – the in-vm instru-
mentation component of Cuckoo Sandbox which employs function
hooking to monitor the execution of the sample and log calls to
selected windows APIs – to link its behavioral log with SysTaint’s
collected data. In particular, we modified Cuckoo Monitor so that it
sends hypercalls to systaint before and after it intercepts and logs a
call to an interesting Windows API.

4.3 Encryption Functions Heuristics
The fnmemlogger plugin is tasked to gather statistics about every
called function (tracked through per-thread shadow stacks). These
statistics are then used to decide if a given function is a crypto-
graphic one. To keep the analysis time low, only the first 10 calls
of any given function are analyzed. Fnmemlogger keeps a record
for each function call, and updates it after every memory access
and executed basic block, keeping track of read and written buffers,
counting the times each of the function’s basic blocks is executed,
and the number of arithmetic and non-arithmetic instructions exe-
cuted. When the function call returns, the read and written buffers
are summarized by their length, entropy, bytes in the ASCII range,
and null bytes, and the per-block execution counters are used to
compute the maximum, the total, and the number of distinct blocks
executed.

4.4 Considerations on Parallelization
Due to the design of QEMU, both our compute-intensive instrumen-
tation and the guest’s code are run in a single thread. To make use
of multiple processing cores, the work must be split among several
PANDA instances, by either splitting the recording in time-based
chunks and analyzing them individually, or running the analysis
on the whole recording, but on a subset of the processes. Unfortu-
nately, working on chunks of the recording implies a loss of the
internal state, and consequently of callstack and taint information.
String searching, by contrast, is essentially stateless and can be
easily parallelized.

5 EXPERIMENTAL EVALUATION
5.1 Goals and challenges
The goal of this experimental evaluation is to assess the effective-
ness of SysTaint to help security researchers in the analysis of the
functions involved in the communication and the data exchanged
by malware samples. Since using SysTaint requires to interactively
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explore the collected data, we tested it against four real-world mal-
ware samples. In particular, we focused on:

• Checking the effectiveness of our heuristics in detecting the
cryptographic functions used by the malware process.

• Checking that it is possible to retrieve the unencrypted mes-
sages the malware sent and received from the network.

• Checking that the contents of the plaintext messages to be
sent through the network are correctly annotated with their
provenance.

The main challenge in analyzing real-world malware samples
lies in the absence of a ground truth in the form of source code or
documentation. This is especially true about the communications
with the C&C server, which are rarely described in details. To
address the lack of ground truth, we included in our tests a sample
of Zeus, a banking Trojan whose source code is publicly available.

5.2 Experimental Settings
5.2.1 Analysis environment. We executed our experiment on a
Windows7 SP1 x86 virtual machinewith 512mb of RAMand 20GB of
hard disk, with Microsoft Office 2007 installed, disabling Windows
Firewall, user account control and Windows Defender. Network
and Internet access was provided to the virtual machine, allowing
it to communicate with the host and the Internet.

5.2.2 Malware sample selection. We selected four modular trojans
known to exchange encrypted binary data in a complex format
with their C&C server: Zeus, Citadel, which we built from source,
and Dridex and Emotet, whose samples we downloaded from Virus-
Total 2. We chose Dridex and Emotet by filtering a larger set of
candidate samples. First, we took a list of malware families known
for exchanging complex data with the C&C server from [15], dis-
carding the samples known for employing complex evasion tech-
niques (e.g., Nymaim, Trickbot). Then, we searched VirusTotal and
VxStream sandbox [4] for recent samples of the selected families.
Finally, we downloaded the selected samples from VirusTotal in
PE/exe x86 format, and ran them in our testing environment, dis-
carding the ones that did not successfully exchange data with any
external server in 10 minutes of execution. Only the Dridex and
Emotet samples passed this last filtering step. The reason why only
two of the samples in our initial dataset communicated with their
C&C, even in a 30 minutes time window, can be that they may have
either detected the virtual environment (which cannot be hidden
completely), employed arbitrarily long timeouts as a measure to
evade the analysis, expected to be launched in a specific way (e.g.,
from a Microsoft Word macro), or had their C&C already taken
down.

5.3 Experiment 1: Analysis of Zeus and Citadel
Zeus is a banking Trojan whose source code was publicly leaked
in 2011, and which became the base for several malware families
developed later on.

We built Zeus from source and ran it via Cuckoo sandbox, obtain-
ing a recording covering approximately 10 minutes of execution
and 32,811 million instructions. We then gathered, for each process,

2https://www.virustotal.com

the code, imported functions, and memory maps at the time of its
last instruction.

Looking for network-related API calls in Cuckoo’s behavioral
log, we inferred that Zeus infected the “explorer.exe” process, and
performed its activities from there. We also identified the API call
“HttpSendRequestA” sending encrypted data to our server.

Our heuristics detected as likely cryptographic 6 functions that
were located in executable and non-file-mapped memory regions,
thus likely to contain the injected malicious code. By inspecting
these functions with a disassembler, we could identify the RC4
encryption function, and a CRC32 implementation.

We ran the systaint plugin, and interactively explored the data
it collected by means of a set of Python scripts. In particular, we
focused on the syscall handling the largest buffer, among the ones
involved in the “HttpSendRequestA” call, identified earlier. We no-
ticed, examining the taint labels on its read buffers, that all the data
being sent was processed by a RC4 encryption function. Repeat-
ing the process with the buffer in input to RC4, we noticed more
encrypted data, with labels identifying the sub-buffers and their
origin, but not the encryption function, which we instead found
by searching for the last function writing into the output buffer.
Comparing this last function to the Zeus source code, we identified
it as BinStorage::_pack, a complex function which contains an
in line call to visualEncrypt, an obfuscation function performing
the xor of each byte with the previous one.

Looking at the plaintext data read by BinStorage::_pack, we
could distinguish a list of processes, some information about the
PC, and a list of HTTP cookies. Among the dependencies of these
buffers, we noticed a second invocation of RC4, and a NtReadFile
call. We could then infer that, before being sent, the data was read
from a file (written by another process), decrypted and re-encrypted.
Looking up the NtReadFile call in Cuckoo’s behavioral log (or
equivalently by examining its dependencies), we could find what
file the original buffer was read from.

By closely inspecting the dependency graph and the buffers that
each syscall reads, it is possible to distinguish the NtDeviceIo-
ControlFile syscall sending the header of the HTTP request, hav-
ing as input the IP address of the host, which in turn is taken from a
registry key holding the configuration. In addition, it is possible to
distinguish the NtDeviceIoControlFile syscall sending the body
of the POST request.

It is worth noting that the plaintext buffers and encryption func-
tions can also be easily found if a part of the plaintext can be guessed.
In this case, for example, we could have looked for large buffers
containing the name of the PC.

The analysis of Citadel was analogous, with only minor differ-
ences in the detected encryption functions and identified cleartext
data.

5.4 Experiment 2: Analysis of Dridex
The Dridex sample did not produce network activity when analyzed
through Cuckoo, but we could observe network activity by starting
the sample manually, possibly indicating that the sample detected
Cuckoo sandbox.

https://www.virustotal.com
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Since we could not use Cuckoo’s behavioral log, we started from
the network traffic and using string searching to detect the process
that generated it.

The sample made four TLS connections to different IP addresses
and did not resolve any DNS name. While the first connection
had no response, the second one contained reasonably long and
encrypted requests and responses, so we decided to focus on it. We
extracted the two payloads sent and the one received, and used
string searching to look for memory accesses involving them.

By manually inspecting the matches, we could quickly find the
relevant process and some functions in the sample’s own code han-
dling the encrypted data verbatim. We noticed that some of the
functions found belong to the “bcryptprimitives.dll” library, which
contains some known Windows encryption functions. The cryp-
tographic function detection reported, in addition to the known
Windows cryptographic APIs, 33 functions in the sample’s own
code. After running the systaint, we searched for the function pro-
ducing the two sent TLS payload and reading the received one.

The two payloads were encrypted by a function in “bcryptprimi-
tives.dll” and contained, respectively, the header of the HTTP POST
request, and a longer encrypted buffer, indicating that Dridex sent
an encrypted payload inside of the already encrypted HTTPS re-
quest. This last encryption function was not automatically detected,
but we could find it as the last function writing into the buffer. In
input to this function, we found a password, presumably used for
the encryption, and the complete plaintext buffer containing a list
of the installed programs, the output of the command “whoami.exe
/all” and several other information about the system.

Applying the same procedure for the response TLS payload, we
found, to our surprise, that the reply was an HTTP 403 (Forbidden)
error message from a Nginx web-server, indicating that our Dridex
sample was not able to reach its C&C server.

5.5 Experiment 3: Analysis of Emotet
We were able to record the execution of the Emotet sample via
Cuckoo. However, Cuckoo was not able to detect and track all the
infected processes. As a result, we had to proceed, as with Dridex,
without the information collected by Cuckoo.

The sample made several non-TLS HTTP POST requests, down-
loading a 1,147 KB payload, probably an updated version of itself,
and a smaller 4,692 bytes payload, on which we decided to focus.
The sample then attempted to contact several SMTP servers.

Using string searching with chunks of the second payload, we
discovered that our implementation could not see the memory
accesses writing the received data to user-space buffers, which
were therefore not taint tracked. However, the matches indicated
that the received data was processed by a function located in non-
file-mapped memory area containing the openssl-1.1.0f DLL. We
added this function to the list of known encryption functions and
re-ran the systaint, so that it would record and taint its output. We
found a second level of encryption/obfuscation, and then, following
the taint labels, the plaintext buffer, where we could distinguish a
list of email addresses and an email template.

5.6 Experimental Results Discussion

Taint tracking. Our implementation was able to correctly track
all the simple data-movement functions and a subset of the more
complex cryptographic functions. As expected from the observa-
tions in subsection 4.1, it was not able to reliably track data across
functions performing complex bitwise operations as AES, and more
surprisingly also the much simpler CRC32. Despite these imper-
fections, our taint tracking implementation proved to be effective
in analyzing real-world malware sample, and paired with string
searching allowed us to successfully reconstruct the data flows.

Cryptographic function detection. The automated detection of
cryptographic functions allowed us to easily deal with at least one
level of encryption in all the analyzed samples, speeding up our
analysis. However, in all samples, it failed to identify some encryp-
tion function in the data-flow path we were interested in, forcing
us to find the functions of interest by searching for the common
functions producing a given sequence of bytes or writing in a given
memory area. In the case of Zeus and Citadel, this was due to the
“visualEncrypt” obfuscation function being inlined in a larger, non
cryptographic function. In Dridex, instead, the undetected function
only performed an obfuscation step, but no actual encryption. We
could not determine the reason in the case of Emotet as we were not
able to inspect the encryption function since, during the analysis,
by employing string searching, we identified a wrapper for the
encryption function and not the encryption function itself. This
may be due to the encryption function not reading the input bytes
in sequential order.

Insights on the usage of network communications. In all cases
it was possible to navigate the execution and locate the plaintext
buffers, whose contents were correctly annotated with their prove-
nance. As expected, not all the contents of the inspected buffers
were annotatedwith taint labels, as not directly derived from tainted
buffers. We can classify the data portions without provenance an-
notations as: (1) constant strings copied from the memory regions
where the malware program unpacked itself, (2) field separators
and other constant parts of the protocol, (3) small integers, with a
specific meaning, that were not obtained by direct transformation
of tainted data.

Even though the analysis of the contents of the fields in the third
category is valuable to understand the protocol, to keep the resource
requirements acceptable, SysTaint limits the use of taint tracking
only to the data obtained via syscalls or produced by cryptographic
functions.

5.7 Performance
The longest step of the analysis is running the systaint plugin,
performing the data-flow analysis and data collection, because of
the heavyweight taint instrumentation. Table 1 shows the time
spent by the systaint plugin in the analysis of the samples. The
analysis of Dridex is faster in proportion because of the absence
of Cuckoo Agent and Cuckoo Monitor from the recording. We
believe it is possible to improve the analysis time by employing
some simple measures, like disabling taint instrumentation on the
processes that are not being tracked.
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Memory is a bigger concern, as it depends on the amount of
addresses that have been tainted; in our tests, however, it stayed
under 8GB.

6 RELATEDWORKS
Record-replay.Record and replay techniques are usually employed
together with debuggers, allowing the analyst to go forward and
backward in the execution trace inspecting the internal states at
any point in time, and studying behaviors that are difficult to repli-
cate such as network communications and those carried out by
multiple threads. Record-replay solutions are expensive in terms of
memory and disk space, and efficient record-replay solutions are rel-
atively recent(QIRA [14],Mozilla RR [23],WinDBG [22], PANDA [9],
RAIN [16]), and still limited to some scenarios, environments or
kinds of programs.

Among these, PANDA is the only solution that allows recording
the execution of a whole virtual machine, ensuring that all the inter-
processes and network interactions are captured, and available for
later study. Severi et al. [30], showed how efficient record-replay
tools such as PANDA can be employed to automatically build a
dataset of malware traces for later study and reverse engineering.

Cryptographic function detection. Detecting and recognizing
cryptographic function is fundamental in the study of malware,
and allows extracting the unencrypted data for further analyses.
Several works discuss automated techniques to detect encryption
functions by means of both static and dynamic analysis.

In [21] Lutz employed dynamic instrumentation and various
heuristics (monitoring entropy, known constants, loads and stores,
and loops) to locate the decryption functions, using taint analysis
to reduce the number of candidate functions.

In ReFormat [35], Wang et al. propose a way of locating the
unencrypted buffer by tracing a program’s execution while it pro-
cessed a message, and automatically separating the execution in
two phases: decryption and processing by monitoring the ratio of
arithmetic operations executed.

In Dispatcher [5], Caballero et al. locate the cryptographic func-
tions by employing a simple heuristic considering the ratio of arith-
metic instructions in the body of each function.

Gröbert [13] summarizes various static and dynamic methods,
implements and tests the effectiveness and performances of the
previous approaches as well as signature-based methods and some
newly proposed heuristics.

Li et al. [19] propose a method to detect plaintext buffers in
applications that immediately re-encrypt the plaintext buffer after
use. Their proposed approach consists in detecting the avalanche
effect of encryption functions.

Table 1: Time spent by SysTaint to analyze each sample.

Sample Instructions Execution time Analysis time
Zeus 32,811 M 10 minutes 7 hours
Citadel 12.414 M 4 minutes 2 hours
Dridex 6,853 M 10 minutes 2 hours
Emotet 21,270 M 4 minutes 4 hours

Wang et al. [34] propose an approach to automatically break
DRM implementations, allowing the analyst to retrieve the unen-
crypted media file. They achieve this goal by detecting the decryp-
tion functions by means of statistical analysis on the entropy of
the written data in order to distinguish encrypted and compressed
data.

In SysTaint we employ a custom heuristic, similar to [13, 21],
to detect both cryptographic and obfuscation functions, based on
information on the buffers a given function read or wrote, the
function size and instruction composition, the presence of loops
and the shape of the call-graph.

Data-flow introspection.Understanding how a process exchanges
and transforms data is a key part of the study of its behavior. As
such, techniques to extract and study a program’s data-flow have
been employed in a large variety of works.

Particularly interesting for the scope of this work are someworks
in the field of automated protocol reverse engineering, which need
to find the buffer holding the unencrypted message through the
techniques discussed in the previous paragraph, then track its prove-
nance, transformations and usage to infer its format and semantics.
Although we do not perform automated protocol reverse engineer-
ing, we aim to extract useful and rich data-flow information that
the analyst can use to locate interesting buffers and functions and
infer the semantics of data. As such, the following works have been
a major inspiration for SysTaint.

In AutoFormat [20], Lin et al. propose observing the way a pro-
gram processes a message to automatically identify the fields of the
protocol and the hierarchical relation among them. The authors
employed taint analysis to track the transformations of each byte in
the received buffer, and call stack analysis to determine the context
in which each byte was processed.

In Dispatcher [5], Caballero et al. propose making use of dynamic
slicing to understand how a buffer is composed. Dynamic tainting
was also employed to associate the fields in the deconstructed buffer
with selected API calls to infer their semantic.

Memory Forensic.Memory Forensic is widely employed in mal-
ware analysis, with frameworks like Volatility [11] and Rekall [3]
including modules to automatically detect signs of infection, for
example the presence of function hooks, or known patterns in
memory.

These techniques can be automatically employed as part of a
sandbox analysis, by applying them, for example, to a memory
snapshot taken at the end of the execution. Some commercial sand-
boxes, like VxStream Sandbox[4] also make use of memory analysis
to automatically inspect the code being executed.

Teller [33] proposes employing a differential memory analysis ap-
proach consisting in configuring a sandbox to trigger a full-system
memory dump when certain conditions verifies, then analyzing the
changes between the different dumps.

In SysTaint we employ memory forensic techniques to perform
virtual machine introspection, obtaining the memory maps and
contents of the running processes at given points in time, providing
the analyst with information on the memory areas and with a quick
way to recover the malware code being executed.
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7 LIMITATIONS AND FUTUREWORKS
7.1 Limitations
Tracking data not obtained through syscalls. To keep memory
and disk usage acceptable, SysTaint only tracks the data written
by syscalls or by detected cryptographic functions, and not other
data that is not directly derived from those. For example, if the
malware reads a file, then sets a variable to a constant depending
on the contents, SysTaint cannot show any dependency between
the constant and the contents of the file.
Code employing virtual machines. Our approach assumes that
the code of the sample is partitioned in functions that are iden-
tifiable by their memory address. This assumption may not hold
true for non-native code that is interpreted or executed by a vir-
tual machine, as is the case with higher level languages like Java,
but also for programs using complex packing techniques. Addi-
tionally, since we rely on the OS’s thread identifiers to distinguish
concurrent activities and maintain the shadow stacks, mechanisms
like coroutines, that multiplex unrelated activities on the same OS
thread are also an obstacle.
Evasion. Our approach shares some of the limitations of sandbox
analysis. In particular, it requires the sample to manifest its ma-
licious behaviors while it is under observation. To mitigate this
issue, our approach can be integrated with techniques such as [17,
18, 25, 31]. Also, malware samples that, as an evasion technique,
perform some time-consuming, CPU-intensive, or API-intensive
activities can also significantly hamper the analysis, causing both
the amount of collected data and analysis time to grow long. For
example, as described in [29], Nymaim is a trojan employingWin32
API Hammering as an evasion technique.

7.2 Future works
Narrowing the semantic gap. It is possible to analyze the output
of SysTaint to automatically detect and highlight interesting data
relationships and behaviors and then allow the analyst to quickly
zoom on the relevant code. Moreover, SysTaint could automatically
infer semantic information about each function from the data it
accesses and from the system APIs it uses.
Integration with other software. Allowing the collected infor-
mation to be accessed from popular reverse engineering environ-
ments like IDA Pro could be of great help to analysts, who would
be able to rapidly check the data any given function read or wrote,
complete with provenance information. It could also be possible to
leverage the Unicorn Engine 3 to allow the execution and fuzzing of
individual functions, using the data that SysTaint collected from the
function’s recorded invocations. Time-traveling debugging could be
implemented by adding checkpointing capabilities to PANDA, and
using the data collected by SysTaint as an index into the execution.

8 CONCLUSIONS
In this work, we aimed at building a tool to help the analyst in
the malware reverse engineering process, addressing, in particu-
lar, the problems arising when debugging and studying malware
communicating with external network resources.

3https://github.com/unicorn-engine/unicorn

We proposed SysTaint, a framework implemented on top of
PANDA, that collects in-depth data about the execution of the
sample, enriched with data-flow and call stack information, so that
an analyst can interactively query it to learn useful information
about the sample’s internal functions and data flow.

We tested SysTaint against four real-world malware samples
and we proved its effectiveness in extracting useful information
about their internal functions, find the unencrypted data being sent
through the network and understand its provenance. Nonetheless,
our approach is not limited to the study of malware, and can be
applied to the reverse engineering of any native software. We re-
leased SysTaint’s source and we believe it can significantly help
the analysts in their reverse-engineering efforts, and that future
developments can refine SysTaint into a valuable addition to the
malware analyst’s toolbox.
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function heuristic 1 heuristic 2 taint tracking
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APPENDIX
A CRYPTO FUNCTIONS DETECTION
Due to the complexity of cryptographic function detection and taint
tracking, we first evaluated their effectiveness on a test application
that makes use of cryptographic APIs from various libraries. For
each tested function, we evaluated whether our custom heuristic
(heuristic 1) and the ratio of arithmetic instructions (heuristic 2) can
detect it or one of its primitives, and whether our taint tracking
implementation detects that the output buffer is derived from the
input buffer. As shown in Table 2, our heuristic 1 detected all the
tested cryptographic functions. However, wewere not able to obtain
the expected results from heuristic 2 described in [13] and [5].
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